Limits to Nanofabrication

  • Ivor Brodie
  • Julius J. Muray
Part of the Microdevices book series (MDPF)


Devices can be made with decreasing linear dimensions until one of two limitations is reached, namely
  • Limitations imposed by the physical principles by which the device operates

  • Limitations imposed by our ability to fabricate the device to the required dimensions and tolerances


Power Dissipation Clean Room Switching Energy Device Limit Tolerate Error Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Hoeneisen and C. A. Mead, Fundamental limitations in microelectronics. I. MOS technology, Solid State Electron. 15, No. 7, 819–829 (July, 1972 ).Google Scholar
  2. 2.
    P. S. Howard and T. Kwok, Electromigration in metals, Rep. Prog. Phys. 52, 301–348 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    L. P. Muray, L. C. Rathbun, and E. D. Wolf, New techniques and analysis of accelerated electromagnetic life testing in multilevel metallizations, Appl. Phys. Lett. 53 (15), 1414 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    L. P. Muray, Electromigration at via contacts in multilevel interconnect systems, Ph.D. dissertation, Cornell University (January, 1990 ).Google Scholar
  5. 5.
    R. W. Keyes, Physical limits in digital electronics, Proc. IEEE 63, No. 5, 740 (May, 1970 ).Google Scholar
  6. 6.
    R. M. Hill, Single-carrier transport in thin dielectric films, Thin Solid Films 1, 39 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    C. Mead and L. Conway, Introduction to VLSIC Systems, Addison-Wesley, Reading, Mass. (1979).Google Scholar
  8. 8.
    J. T. Wallmark, A statistical model for determining the minimum size in integrated circuits, IEEE Trans. Electron Devices ED-26, No. 2, 135 (February, 1979 ).Google Scholar
  9. 9.
    A. V. Crewe, Some limitations on electron beam lithography, J. Vac. Sci. Technol. 16, No. 2, 255 (March-April, 1979 ).Google Scholar
  10. A. N. Broers, Limits of thin-film microfabrication, Proc. R. Soc. London Ser. A 46, 1 (1988).ADSGoogle Scholar
  11. 10.
    T. C. Fry, Probability and its Engineering Use, 2nd ed., Van Nostrand, Princeton, N.J. (1965).Google Scholar
  12. 11.
    K. Murata and D. F. Kyser, Monte Carlo methods and microlithography simulation for electron and X-ray beams, Adv. Electron. Electron Phys. 69, 176–261 (1987).CrossRefGoogle Scholar
  13. 12.
    E. Spiller and R. Feder, in: X-ray Optics: Applications to Solids ( H. J. Queisser, ed.), Springer-Verlag, Berlin (1975).Google Scholar
  14. 13.
    I. E. Sutherland, C. A. Mead, and T. E. Everhart, Basic limitations in microcircuit fabrication technology, Report No. R-1956-ARPA, RAND Corporation, Santa Monica, Calif. ( November, 1976 ).Google Scholar
  15. 14.
    H. I. Smith, A statistical analysis of UV, x-ray, and charged particle lithographies, J. Vac. Sci. Technol. B4 (1), 148–153 (1986).CrossRefGoogle Scholar
  16. 15.
    T. Ohmi, N. Mikoshiba, and K. Tsubouchi, Super clean room system-ultra clean technology for submicron LSI fabrication, Proceedings of the First International Symposium on Ultra Large Scale Integration (VLSI) (1987).Google Scholar
  17. 16.
    K. Dillenbeck, Characteristics of air ionization in the clean room, Microcontamination (June, 1978 ).Google Scholar
  18. 17.
    P. D. Scovell, C. N. Duckworth, and P. J. Raser, Modelling of VLSI semiconductor manufacturing processes, Rep. Prog. Phys. 52, 349–388 (1989).ADSCrossRefGoogle Scholar
  19. 18.
    D. A. Antoniadis, S. E. Hansen, R. W., Dutton, and G. Gonzalez, SUPREM IA program for IC process modelling and simulation, Technical Report No. 5019–1, Integrated Circuit Laboratory, Stanford University (May, 1977 ).Google Scholar
  20. J D. Plummer, R. W. Dutton, J. F. Gibbons, C. R. Helms, J. D. Meindl, W. A. Tiller, L. A. Chrestel, C. P. Ho, L. Mei, K. C. Saraswat, B. E. Deal, and T. I. Kamins, Computer Aided Design of Integrated Circuit Fabrication Processes for VLSI Devices, Technical Report, Stanford Electronics Laboratories, Stanford University, California (1980).Google Scholar
  21. 19.
    W. G. Oldham, S. N. Nandgaonkar, A. R. Neureuther, and M. O’Toole, A general simulator for VLSI lithography and etching processes: Part I-Application to projection lithography, IEEE Trans. Electron Devices ED-26(4), 717–724 (1979).Google Scholar
  22. W. G. Oldham, A. R. Neureuther, C. Sung, J. L. Reynolds, and S. N. Nandgaonkar, A general simulator for VLSI lithography and etching processes: Part II-Application to deposition and etching, IEEE Trans. Electron Devices ED-27(8), 1455–1462 (1980).Google Scholar
  23. 20.
    D. E. Prober, Quantum transport in microstructures, Microelectron. Eng. 5, 203–216 (1986).CrossRefGoogle Scholar
  24. 21.
    C. D. Wilkinson, Nanofabrication, Microelectron. Eng. 6, 155–162 (1987).CrossRefGoogle Scholar
  25. 22.
    E. D. Wolf, Nanofabrication opportunities for interdisciplinary research, Microelectron. Eng. 9, 5–11 (1989).CrossRefGoogle Scholar
  26. 23.
    T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, and Y. Vladimirsky, Nanostructure technology, IBM J. Res. Dev. 32, No. 4, 462 (July, 1988 ).Google Scholar
  27. 24.
    D. C. Flanders and A. E. White, Application of 100 A linewidth structures fabricated by shadowing techniques, J. Vac. Sci. Technol. 19(4), 892 (November-December, 1981 ).Google Scholar
  28. 25.
    M. D. Feuer and D. E. Prober, Step-edge fabrication of ultrasmall Josephson microbridges, Appl. Phys. Lett. 36(3). 226 (February, 1980 ).Google Scholar
  29. D. E. Prober, M. D. Feuer, and N. Giordano, Fabrication of 300-A metal lines with substrate-step techniques, Appl. Phys. Lett. 37(1), 94 (July, 1980 ).Google Scholar
  30. 26.
    W. D. Williams and N. Giordano, Fabrication of 80 A metal wires, Rev. Sci. Instrum. 55(3), 410–412 (March, 1984 ).Google Scholar
  31. 27.
    I. Adesida, A. Muray, M. Isaacson, and E. D. Wolf, Very high resolution ion beam lithography, Microcircuit Eng. 83, 151–156 (1983).Google Scholar
  32. 28.
    H. G. Craighead and P. M. Mankiewich, Ultra-small metal particle arrays produced by high resolution electron-beam lithography, J. Appl. Phys. 53(11), 7186–7188 (November, 1982 ).Google Scholar
  33. 29.
    U. B. Sleytr, M. Sara, and D. Pum, Application potentials of two dimensional protein crystals, Microcircuit Eng. 9, 13–20 (1989).CrossRefGoogle Scholar
  34. 30.
    G. E. Moore, in: Tech. Dig. 1975 Int. Electron Devices Meet., pp. 11–13, IEEE, New York (1975).Google Scholar
  35. 31.
    R. N. Noyce, Large-scale integration: What is yet to come? Science 195, 1102–1107 (1977).ADSCrossRefGoogle Scholar
  36. 32.
    D. K. Ferry, J. R. Barker, and C. Jacoboni (eds.), Physics of Nonlinear Transport in Semi-conductors, Ser. B, Vol. 52, Plenum Press, New York (1980).Google Scholar
  37. 33.
    D. E. Prober, in: Percolation, Localization, and Superconductivity ( A. M. Goldman and S. Wolf, eds.), Plenum Press, Les Arcs, France (1983).Google Scholar
  38. 34.
    C. Harvey, C. Hoch, R. C. Staples, B. Whitehead, J. Comeau, and E. D. Wolf, Signaling for growth orientation and cell differentiation by surface topography in Uromyces, Science 235, 1659–1662 (March, 1987 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ivor Brodie
    • 1
  • Julius J. Muray
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations