Advertisement

Pattern Generation

  • Ivor Brodie
  • Julius J. Muray
Chapter
Part of the Microdevices book series (MDPF)

Abstract

While thin-film deposition enables one dimension of a device to be made with remarkable precision, down to, say, 10 Å, the other two dimensions are more difficult to form with the same degree of accuracy. Two-dimensional patterns are usually made on the surface by the process of lithography,(136) which derives from printing plate technology. The trend in microfabrication is toward increased circuit complexity and reduced pattern dimensions. Line widths of 0.5 μm and tolerances of 0.1 μm are now common for microcircuits. In order to meet these requirements, the need has arisen for pattern generation and lithography systems with superior performance specifications.

Keywords

Electron Beam Modulation Transfer Function Projection System Very Large Scale Integration Optical Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. M. Moreau, Semiconductor Lithography, Plenum, N.Y. (1988)Google Scholar
  2. 2.
    B. J. Lin, Deep UV lithography, J. Vac. Sci. Technol. 12(6), 1317 (November-December, 1975 ).Google Scholar
  3. 3.
    M. C. King, Future development for 1:1 projection photolithography, IEEE Trans. Electron Devices ED-26(4), 705 (April, 1979); M. C. King and E. S. Muraski, New generation of 1:1 optical projection-mask aligners, Proc. SPIE 174, 70 (1979); J. W. Bossung and E. S. Muraski, Optical advances in projection lithography, Proc. SPIE 135, 16 (1978); J. W. Bossung, Projection printing characterization, Proc. SPIE 100, 80 (1977).CrossRefGoogle Scholar
  4. 4.
    H. Binder and M. Lacombat, Step-and-repeat projection printing for VLSI circuit fabrication, IEEE Trans. Electron Devices ED-26(4), 698 (April, 1979); G. L. Resor and A. C. Tobey, The role of direct step-on-the-wafer in microlithography strategy for the ‘80’s, Solid State Technol. 22(8), 101 (August, 1979); H. E. Mayer and E.W. Leobach, A new step-by-step aligner for very large scale integration (VLSI) production, Proc. SPIE 221, 9 (1980).CrossRefGoogle Scholar
  5. 5.
    M. C. King and M. R. Goldrick, Optical MTF evaluation techniques for microelectronic printers, Solid State Technol. 19(2), 37 (February, 1977 ).Google Scholar
  6. 6.
    F. H. Dill, A. R. Neureuther, J.A. Tuttle, and E. J. Walker, Modeling projection printing of positive photoresists, IEEE Trans. Electron Devices ED-22(7), 456 (July, 1975).Google Scholar
  7. 7.
    J.D. Cuthbert, Optical projection printing Solid State Technol. 20(8), 59 (August, 1977).Google Scholar
  8. 8.
    F. H. Dill, Optical lithography IEEE Trans. Electron Devices ED-22(7), 440 (July, 1975).Google Scholar
  9. 9.
    M. J. Bowden and L. F. Thompson, Resist materials for fine line lithography,IEEE Trans. Electron Devices ED-22(7), 456 (July, 1975).Google Scholar
  10. 10.
    F. W. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, Characterization of positive photoresist, IEEE Trans. Electron Devices ED-22(7), 455 (July, 1975).Google Scholar
  11. 11.
    D. A. McGillis and D. L. Fehrs, Photolithographic linewidth control,IEEE Trans. Electron Devices ED-22(7), 471 (July, 1975).Google Scholar
  12. 12.
    Mann 4800, manufactured by CICA-Mann Corp. Burlington, Mass.Google Scholar
  13. 13.
    W. W. Ng, C.-S. Hong, and A. Yariv, Holographic interference lithography for integrated optics IEEE Trans. Electron Devices ED-25(l0), 1193 (October, 1978).Google Scholar
  14. 14.
    C. V. Shank and R. V. Schmidt, Optical technique for producing 0.1 p periodic surface structures Appl. Phys. Lett. 23(3), 154 (August, 1973).Google Scholar
  15. 15.
    H. W. Schnopper, L. P. Van Speybroeck, J. P. Delvaille, A. Epstein, E. Kaline, R. Z. Bachrach, J. Dijkstra, and L. Lantward, Diffraction grating transmission efficiencies for XUV and soft X-rays, Appl. Opt. 16(4), 1088 (April, 1977 ).Google Scholar
  16. 16.
    P. L. Csonka, Holographic X-ray gratings generated with synchrotron radiation, J. Appl. Phys. 52(4), 2692 (April, 1981).Google Scholar
  17. 17.
    D. L. Spears and H. I. Smith, High-resolution pattern replication using soft X-rays, Electron. Lett. 8, 102 (February, 1972 ).Google Scholar
  18. 18.
    M. Green and V. E. Cosslett, Measurement of K, L, and M shell X-ray production efficiencies,Br. J. Appl Phys. 1 425 (1968).Google Scholar
  19. 19.
    M. Yoshimatsu and S. Kozaki, in- X-Ray Optics Application to solids (H. J. Queisser, ed.), Springer-Verlag, Berlin (1977).Google Scholar
  20. 20.
    D. Maydan, G. A. Coquin, J. R. Maldonado, S. Somekh, D. Y. Lou, and G. N. Taylor, High speed replication of submicron features on large areas by X-ray lithography, IEEE Trans. Electron Devices ED-22(7), 429 (1975).Google Scholar
  21. 21.
    M. P. Lepselter, Scaling the micron barrier with X-rays, IDEM Tech. Dig. 1980, 42 (December 8–10, 1980 ).Google Scholar
  22. 22.
    D. J. Nagel, in: Advances in X-ray Analysis (W. L. Pickles, C. S. Barrett,. J. B. Newkirk, and C. O. Ruud, eds.), Vol. 18, p.. 1, Plenum Press, New York (1975).Google Scholar
  23. 23.
    J.J. Muray, Photoelectric effect induced by high-intensity laser light beam in quartz and borosilicate glass, Dielectgrics 2, 221 (February, 1964 ).Google Scholar
  24. 24.
    R. A. Gutcheck, J.J. Muray, and D. C. Gates, An intense plasma X-ray source for X-ray microscopy, Proceedings of the Brookhaven Conference on the Optics of Short Wavelengths (November, 1981 ).Google Scholar
  25. 25.
    H. I. Smith, D. L. Spears, and S. E. Bernacki, X-ray lithography: A complementary technique to electron beam lithography, J. Vac. Sci. Technol. 10(6), 913 (November-December, 1973 ).Google Scholar
  26. 26.
    J. Kirz, D. Syare, and J. Dilger, Comparative analysis of X-ray emission microscopies for biological specimens, Ann. N.Y. Acad. Sci. 306, 291–305 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    G. N. Taylor, X-ray resist materials, Solid State Technol. 23(5), 73 (May, 1980).Google Scholar
  28. 28.
    A. R. Neureuther, Simulation of X-ray resist line edge profiles, J. Vac. Sci. Technol. 15(3), 1004 (May-June, 1978 ).Google Scholar
  29. 29.
    J. H. McCoy and P. A. Sullivan, Precision mask alignment for X-ray lithography, Proceedings of the Seventh International Conference on Electron and Ion Beam Science and Technology, p. 536, Electrochemical Society, Princeton, N.J. (1976).Google Scholar
  30. 30.
    J. M. Moran and D. Maydan, High resolution, steep profile, resist patterns, Bell Syst. Tech. J. 58(5), 1027 (May-June, 1979 ).Google Scholar
  31. 31.
    G. N. Taylor and T. M. Wolf, Plasma-developed X-ray resists, J. Electrochem. Soc. 127(12), 2665 (December, 1980 ).Google Scholar
  32. 32.
    E. Spiller, D. E. Eastman, R. Feder, W. D. Grobman, W. Gudat, and J. Topalian, Application of synchrotron radiation to X-ray lithography, J. Appl. Phys. 47(12), 5450 (December, 1976).Google Scholar
  33. 33.
    H. Winick and A. Bienenstock, Synchrotron radiation research, Annu. Rev. Nucl. Part. Sci. 28, 33–113 (1978).ADSCrossRefGoogle Scholar
  34. 34.
    G. R. Brewer (ed.), Electro-Beam Technology in Microelectronic Fabrication, Academic Press, New York (1980); G. Owen, Electron lithography for the fabrication for microelectron devices, Rep. Prog. Phys. 48, 795 (1985).Google Scholar
  35. 35.
    P. R. Thornton, Electron physics in device microfabrication, I: General background and scanning systems, Adv. Electron. Electron Phys. 48, 272 (1979).CrossRefGoogle Scholar
  36. 36.
    A. N. Broers and T. H. P. Chang, High resolution lithography for microcircuits, IBM Research Report No. 7403, IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y. ( November, 1978 ).Google Scholar
  37. 37.
    H. C. Pfeiffer, Recent advances in electron-beam lithography for high-volume production of VLSI devices, IEEE Trans. Electron Devices ED-26(4), 663 (April, 1979 ).Google Scholar
  38. 38.
    I. Brodie, E. R. Westerberg, D. Cone, J. J. Muray, N. Williams,and L. Gasiorek, Electron beam wafer exposure system for high throughput, direct write, sub-micron, lithography, IEEE Trans. Electron Devices ED-28(11), 1422 (November, 1981 ).Google Scholar
  39. 39.
    W. Krakow, L. A. Howland, and G. McKinley, Multiplexing electron beam patterns using single-crystal thin films, J. Phys. E 12, 948 (1979).CrossRefGoogle Scholar
  40. 40.
    P. R. Malmberg, T. W. O’Keeffe, M.M. Sopira, and M. W. Levi, LSI pattern generation and replication by electron beams, J. Vac. Sci. Technol. 10(6), 1025 (November-December, 1973 ).Google Scholar
  41. 41.
    E. D. Roberts, Electron resists for the manufacture of integrated circuits, Philips Tech. Rev. 35, 41 (1975).Google Scholar
  42. 42.
    M. P. Scott, Recent progress on electron image projector, J. Vac. Sci. Technol. 15(3), 1016 (May-June, 1978 ).Google Scholar
  43. 43.
    M. B. Heritage, Electron-projection microfabrication system, J. Vac. Sci. Technol. 12(6), 1135 (November-December, 1973 ).Google Scholar
  44. 44.
    H. Koops, On electron projection systems, J. Vac. Sci. Technol. 10(6), 909 (November-December, 1973 ).Google Scholar
  45. 45.
    L. N. Heynick, E. R. Westerberg, C. C. Hartelius, Jr., and R. E. Lee, Projection electron lithography using aperture lenses, IEEE Trans. Electron Devices ED-22(7), 399 (July, 1975 ).Google Scholar
  46. 46.
    C. A. Spindt, A thin-film field-emission cathode, J. Appl. Phys. 39(7), 3504 (June, 1968 ).Google Scholar
  47. 47.
    C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, Physical properties of thin-film field emission cathodes with molybdenum cones, J. Appl. Phys. 47(12), 5248 (December, 1976).Google Scholar
  48. 48.
    W. Aberth, C. A. Spindt, and K. T. Rogers, Multipoint field ionization beam source, Record of the 11th Symposium on Electron, Ion, and Laser Beam Technology (R. F. M. Thornley, ed.), pp. 631636, San Francisco Press, San Francisco (1971).Google Scholar
  49. 49.
    W. Aberth and C. A. Spindt, Characteristics of valcano field ion quadrupole mass spectrometer, Int. J. Mass Spectrom. Ion Phys. 25, 183 (1977).CrossRefGoogle Scholar
  50. 50.
    K. Amboss, Electron optics for microbeam fabrication, Scanning Electron Microsc. 1, 699 (1976).Google Scholar
  51. 51.
    D. S. Alles, C. J. Biddick, J. H. Bruning, J. T. Clemens, R. J. Collier, E. A. Gere, L. R. Harriott, F. Leone, R. Liu, T.J. Mulrooney, R.J. Nielsen, N. Paras, R. M. Richman, C. M. Rose, D. P. Rosenfeld, D. E. A. Smith, and M. G. R. Thomson, EBES4: A new electron-beam exposure system, J. Vac. Sci. Technol. B 5(1), 47 (January-February, 1987 ).Google Scholar
  52. 52.
    M. G. R. Thomson, R. Liu, R. J. Collier, H. T. Carroll, E. T. Doherty, and R. G. Murray, The EBES4 electron-beam column, J. Vac. Sci. Technol. B5(1), 53 (January-February, 1987 ).Google Scholar
  53. 53.
    R. J. Nielsen, J. H. Bruning, R. M. Richman, C. J. Biddick, J. Giacchhi, G. J. W. Kossyk, D.R. Bush, S. J. Barna, and D. S. Alles, A hydraulic X-Y stage system for application in electron beam exposure systems, J. Vac. Sci. Technol. B5(1), 57 (January-February, 1987 ).Google Scholar
  54. 54.
    D. S. Alles and M. G. R. Thomson, in VLSI Electronics, Microstructure Science, Vol. 16, Academic Press, New York (1987).Google Scholar
  55. 55.
    D. R. Herriott, R. J. Collier, D. S. Alles, and J. W. Stafford, EBES: A practical electron lithographic system, IEEE Trans. Electron Devices ED-22(7), 385 (July, 1975).Google Scholar
  56. 56.
    R. F. W. Pease, J. P. Ballantyne, R. C. Henderson, A. M. Voshchenkov, and L. D. Yau, Application of the electron beam exposure system, IEEE Trans. Electron Devices,ED-22(7), 393 (July, 1975).Google Scholar
  57. 57.
    D. E. Davis, R. D. Moore, M. C. Williams, and O. C. Woodard, Automatic registration in an electron-beam lithographic system, IBM J. Res. Dev. 21m(6), (November, 1977 ).Google Scholar
  58. 58.
    A. D. Wilson, T. HJ. P. Chang, and A. Kern, Experimental scanning electron-beam automatic registration system, J. Vac. Sci. Technol. 12(6), 1240 (November-December, 1975); E. R. Westerberg, D. R. Cone, J. J. Muray, and J.C. Terry, Reregistration system for a charged particle beam exposure system. U. S. Patent 4,385, 238 (1983).Google Scholar
  59. 59.
    E. D. Wolf, P. J. Coane, and F.S. Ozdemir, Composition and detection of alignment marks for electron beam lithography, J. Vac. Sci. Technol. 12(6), 1266 (November-December, 1975).Google Scholar
  60. 60.
    J. J. Muray, Characteristics and applications of multiple beam machines, Microelectron. Eng. 9, 305 (1989).CrossRefGoogle Scholar
  61. 61.
    B. J. G. M. Roelofs and J.E. Barth, Feasibility of multi-beam electron lithography, Microelectron. Eng. 2, 259 (1984).CrossRefGoogle Scholar
  62. 62.
    T. Sasaki, A multibeam scheme for electron-beam lithography, J. Vac. Sci. Technol. 19(4), 963 (November-December, 1981).Google Scholar
  63. 63.
    J. S. Greeneich, Development characteristics of poly-(methyl methacrylate) electron resist, J. Electrochem. Soc. 122(7), 970 (July, 1975).Google Scholar
  64. 64.
    T. E. Everhart and P. H. Hoff, Determination of kilovolt electron energy dissipation vs. penetration distance in solid materials, J. Appl. Phys. 42(13), 5837 (December, 1971).Google Scholar
  65. 65.
    G. W. Martel and W. B. Thompson, A Comparison of commercially available electron beam resists, Semicond. Int. 2(1), 69 (January-February, 1979).Google Scholar
  66. 66.
    L. F. Thompson, J. P. Ballantyne, and E. D. Feit, Molecular parameters and lithographic performance of poly(glycidylmethacrylate-co-ethyl acrylate): A negative electron resist, J. Vac. Sci. Technol. 12(6), 1280 (November-December, 1975).Google Scholar
  67. 67.
    S. W. Pang, R. R. Kunz, M. Rothschild, R. B. Goodman, and M. W. Horn, Aluminum oxides as imaging materials for 193-nm excimer laser lithography, J. Vac. Sci. Technol. B 7(6), 1624–1629 (November-December, 1989).Google Scholar
  68. 68.
    J. Melngailis, D. J. Ehrlich, S. W. Pang, and J. N. Randall, Cermet as an inorganic resist for ion lithography, J. Vac. Sci. Technol. B 5(1), 379–382 (January-February, 1987).Google Scholar
  69. 69.
    K. J. Polasko, C. C. Tsai, M. R. Cagan, and R. F. W. Pease, Silver diffusion in Ag2Se/GeSe2 inorganic resist system, J. Vac. Sci. Technol. B 4(1), 418–422 (January-February, 1986).Google Scholar
  70. 70.
    B. Singh, S. P. Beaumont, A. Webb, P. G. Bower, and C. D. W. Wilkinson, High resolution patterning with Ag2S/As2S3 inorganic electron-beam resist and reactive ion etching, J. Vac. Sci. Technol. B 1(4), 1174–1178 (October-December, 1983).Google Scholar
  71. 71.
    A. Scherer and H. G. Craighead, Barium fluoride and strontium fluoride negative electron beam resists, J. Vac. Sci. Technol. B 5(1), 374–379 (January-February, 1987).Google Scholar
  72. 72.
    J. M. Macaulay, R. M. Allen, L. M. Brown, and S. D. Berger, Nanofabrication using inorganic resists, Microelectronic. Eng. 9, 557 (1989).CrossRefGoogle Scholar
  73. 73.
    R. Behrisch (ed.), Sputtering by Particle Bombardment, Vols. I and II, Springer-Verlag, Berlin ( 1981, 1983 ).Google Scholar
  74. 74.
    M. Isaacson and A. Muray, In situ vaporization of very low molecular weight resists using 1/2 nm diameter electron beams, J. Vac. Sci. Technol. 19(4), 1117 (November-December, 1981 ).Google Scholar
  75. 75.
    A. Muray, M. Scheinfein, I. Adesida, and M. Isaacson, Radiolysis and resolution limits of inorganic halide resists, J. Vac. Sci. Technol. B3 (1), 367 (1985).CrossRefGoogle Scholar
  76. 76.
    A. Muray, M. Isaacson, and I. Adesida, A1F3—A new very high resolution electron beam resist, Appl. Phys. Lett. 45(5), 589 (September, 1984).Google Scholar
  77. 77.
    R. Kelly, Phase changes in insulators produced by particle bombardmentNucl. Instrum. Methods 1832–183 (part 1) 351 (1981).Google Scholar
  78. 78.
    R. D. Heidenreich, L. F. Thompson, E. D. Feit, and C. Melliar-Smith, Fundamental aspects of electron beam lithography, I. Depth-dose response of polymeric electron beam resists, J. Appl. Phys. 44(9), 4039 (September, 1973).Google Scholar
  79. 79.
    J.S. Greeneich and T. Van Duzer, An exposure model for electron-sensitive resists,IEEE Trans. Electron Devices ED-21(5), 286 (May, 1974).Google Scholar
  80. 80.
    A. Barraud, C. Rausilio, and A. Rauaudel-Tiexier, Monomolecular resists—A new approach to a high resolution electron beam microlithography, J. Vac. Sci. Technol. 16(6), 2003 (November-December, 1979).Google Scholar
  81. 81.
    M. S. Isaacson and A. Muray, Nanolithography using in situ electron beam vaporization of very low molecular weight resists, Workshop on Molecular Electronic Devices, Naval Research Laboratory (March 23–24, 1981 ).Google Scholar
  82. 82.
    M. Isaacson and A. Muray, In situ vaporization of very low molecular weight resists using 1/2 nm diameter electron beams, J. Vac. Sci. Technol. 19(4), 1117 (November-December, 1981 ).Google Scholar
  83. 83.
    T. H. P. Chang, Proximity effect in electron-beam lithography, J. Vac. Sci. Technol. 12(6), 1271 (November-December, 1981).Google Scholar
  84. 84.
    A. N. Broers and T. H. P. Chang, High resolution lithography for microcircuits, IBM Research Report No. 7403, IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y. ( November, 1978 ).Google Scholar
  85. 85.
    D. F. Kyser and K. Murata, in:Proceedings of the 6th International Conference on Electron and Ion Beam Science and Technologyp. 205, Electrochemical Society, Princeton, N.J. (1974).Google Scholar
  86. 86.
    A. N. Broers, Resolution limits of PMMA resist for electron beam exposure, J. Electrochem. Soc. 128, 166 (1981).Google Scholar
  87. 87.
    A. N. Broers, in:Scanning Electron Microscopy 1969 Proceedings of the 3rd Annual Scanning Electron Microscopy Symposiump. 1, ITT Research Institute, Chicago (1970).Google Scholar
  88. 88.
    S.A. Rishton, S. P. Beaumont, and C. D. W. Wilkinson, in:Proceedings of Microcircuit Engineering 82p. 341, Grenoble (1982).Google Scholar
  89. 89.
    J. J. Muray, Electron beam processing,VLSI Electronics Microstructure Science21, 113 (1988).Google Scholar
  90. 90.
    A. N. Broers, Resolutions limits for electron-beam lithography, IBM J. Res. Dey. 32(4), 502 (July, 19883.Google Scholar
  91. 91.
    A. N. Broers, Limits on thin-film microfabrication,Proc. R. Soc. London Ser. A 416, 1 (1988).Google Scholar
  92. 92.
    A. N. Broers, in: Proceedings of the 1st International Conference on Electron and Ion Beam Science and Technology (R. Bakish, ed.), p. 191, Wiley, New York (1964); A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Electron beam fabrication of 80 A metal structures, Appl. Phys. Lett. 29, 596 (1976); A. N. Broers and R. B. Laibowitz, in: Future Trends in Superconductive Electronics, B (S. Deavor, Jr., et al.,eds.), p. 289, American Institute of Physics, New York (1978).Google Scholar
  93. 93.
    G. A. C. Jones, S. Blythe, and H. Ahmed, in: Proceedings of Microcircuit Engineering 86, p. 263, North-Holland, Amsterdam (1986).Google Scholar
  94. 94.
    J. M. Macaulay, The production of nanometre structures in inorganic materials by electron beams of high current density, Ph.D. thesis, Cambridge University Press, London (1989).Google Scholar
  95. 95.
    J. M. Macaulay, R. M. Allen, L. M. Brown, and S. D. Berger, Nanofabrication using inorganic resists, Microelectron. Eng. 9, 557 (1989).CrossRefGoogle Scholar
  96. 96.
    T. J. Bullough, C. J. Humphreys, and R. W. Devenish, Electron beam induced hole-drilling and lithography on a nanometre scale in Al, MgO and a-AIF3 in a STEM, Proc. MRS, Boston (1989).Google Scholar
  97. 97.
    S. D. Berger, J. M. Macaulay, L. M. Brown, and R. M. Allen, High current density electron beam induced desorption, Mat. Res. Soc. Symp. Proc. 129, 515 (1989).CrossRefGoogle Scholar
  98. 98.
    J. M. Macaulay and S. D. Berger, Characterization of the lithographic properties of inorganic resists with nanometre resolution on bulk substrates, Microelectron. Eng. 6, 527 (1987).CrossRefGoogle Scholar
  99. 99.
    A. Muray, Electron and ion beam nanolithography, Ph.D. thesis, Cornell University, Ithaca, N.Y. (1984).Google Scholar
  100. 100.
    A. N. Broers, J. J. Cuomo, and W. Krakow, Method for producing lithographic structures using high energy electron beams, IBM Tech. Disc!. Bull. 24, 1534 (1981).Google Scholar
  101. 101.
    K. J. Polasko, Y. W. Yau, and R. F. W. Pease, Low energy electron beam lithography, SPIE 333, 76–82 (1982).CrossRefGoogle Scholar
  102. 102.
    M. A. McCord and R. F. W. Pease, Scanning tunneling microscope as a micromechanical tool, Appl. Phys. Lett. 50(10), 569 (9 March, 1987).Google Scholar
  103. 103.
    M. A. McCord and R. F. W. Pease, Exposure of calcium fluoride resist with the scanning tunneling microscope, J. Vac. Sci. Technol. B 5(1), 430 (January-February, 1987).Google Scholar
  104. 104.
    M. A. McCord and R. F. W. Pease, A scanning tunneling microscope for surface modification, J. Phys. Colloq. C2, Suppl. to No. 3, Vol. 47 (March, 1986 ).Google Scholar
  105. 105.
    G. G. Roberts, An applied science perspective of Langmuir-Blodgett films, Adv. Phys. 34 (4), 475 (1985).ADSCrossRefGoogle Scholar
  106. 106.
    A. N. Broers and M. Pomerantz, Rapid writing of fine lines in Langmuir-Blodgett films using electron beams, Thin Solid Films 99, 323–329 (1983).ADSCrossRefGoogle Scholar
  107. 107.
    R. L. Seliger, J. W. Ward, V. Wang, and R. L. Kubena, A high-intensity scanning ion probe with submicrometer spot size, J. Appl. Phys. Lett. 34(5), 310 (March, 1979).Google Scholar
  108. 108.
    B. A. Free and G.A. Meadows, Projection ion lithography with aperture lenses, J. Vac. Sci. Technol. 15(3), 1028 (May-June, 1978).Google Scholar
  109. 109.
    G. Stengl, R. Kaitna, H. Loschner, P. Wolf, and R. Sacher, Ion projection system for IC production, J. Vac. Sci. Technol. 16(6), 1883 (November-December, 1979 ); G. Stengl, P. Wolf, R. Kaitna, H. Loschner, and R. Sacher, Experimental results and future prospects of damagnifying ion-projection systems, Paper presented at the Third International Conference on Ion Implantation Equipment and Techniques, Kingston, Canada (July 8–11, 1980 ).Google Scholar
  110. 110.
    L. Csepregi, F. Iberl, and P. Eichinger, Ion-beam shadow printing through thin silicon foils using channeling, Appl. Phys. Lett. 37(7), 630 (October, 1980).Google Scholar
  111. 111.
    J. L. Bartelt, C. W. Slayman, J. E. Wood, J. Y. Cheyn, and C.M. Mckenna, Masked ion-beam lithography: A feasibility demonstration for submicrometer device fabrication, J. Vac. Sci. Technol. 19, 1166 (1981).ADSCrossRefGoogle Scholar
  112. 112.
    F.-O. Fong, D. P. Stumbo, S. Sen, G. Damm, D. W. Engler, J. C. Wolfe, J.N. Randall, P. Mauger, and A. Shimkunas, Low stress silicon stencil masks for sub-100 nm ion beam lithography, Microelectron. eng. 11, 449–452 (1990).CrossRefGoogle Scholar
  113. 113.
    D.P. Stumbo, G. A. Damm, D. W. Engler, F.-O. Fong, S. Sen, J. C. Wolfe, J. N. Randall, P. Mauger, A. Shimkunas, and H. Loschner, Advances in mask fabrication and alignment for masked ion beam lithography, SPIE Conf. (1990).Google Scholar
  114. 114.
    D. P. Stumbo, S. Sen, F.-O. Fong, G. A. Damm, D. W. Engler, J. C. Wolfe, and J. N. Randall, Alignment for masked ion beam lithography using ion-induced fluorescence, Electron, Ion and Photon Beam Conf. (1990).Google Scholar
  115. 115.
    L. W. Swanson, G. A. Schwind, A. E. Bell, and J.E. Brady, Emission characteristics of gallium and bismuth liquid metal field ion sources, J. Vac. Sci. Technol. 16(6), 1864 (November-December, 1979).Google Scholar
  116. 116.
    R. J. Culbertson, T. Sakurai, and G. H. Robertson, Ionization of liquid metals, gallium, J. Vac.Sci. Technol. 16(2), 574 (March-April, 1979).Google Scholar
  117. 117.
    M. Komura, N. Atoda,and H. Kawakatsu, Ion beam exposure of resist materials, J. Electrochem. Soc. 126(3), 483 (March, 1979).Google Scholar
  118. 118.
    T. M. Hall, Liquid gold ion source, J. Vac. Sci. Technol. 16(6), 1871 (November-December, 1979).Google Scholar
  119. 119.
    L. W. Swanson, A. E. Bell, G. A. Schwind, and J. Orloff, A comparison of the emission characteristics of liquid ion sources of gallium, indium and bismuth, Paper presented at the Ninth International Conference on Electron Science and Ion Beam Technology, St. Louis, Missouri (May 11–16, 1980 ).Google Scholar
  120. 120.
    T. M. Hall, A. Wagner, and L. F. Thompson, Ion beam exposure characteristics of resists, J. Vac. Sci. Technol. 16(6), 1889 (November-December, 1979).Google Scholar
  121. 121.
    T. Shiokawa, P. H. Kim, K. Toyoda, and S. Namba, 100 keV focused ion beam system with E x B mass filter for maskless ion implantation, J. Vac. Sci. Technol. B. 1(4), 1117 (October-December, 1983).Google Scholar
  122. 122.
    W. Fallmann, F. Paschke, G. Stengl, L.-M. Buchamann, A. Heuberger, A. Chalupka, J. Fegerl, R. Fischer, H. Loschner, L. Malek, R. Nowak, G. Stengl, C. Traher, and P. Wolf, Ion Projection Lithography: Electronic Alignment and Dry Development of IPL Exposed Resist Materials, AEU (Austria), Vol. 44, Section 3 (1990).Google Scholar
  123. 123.
    G. Stengl, H. Loschner, E. Hammel, E. D. Wolf, and J. J. Muray, Ion projection lithography, in: Emerging Technologies for in Situ Processing ( D. J. Ehrlich and V. T. Nguyen, eds.), Nijhoff, The Hague (1988).Google Scholar
  124. 124.
    G. Stengl, H. Loschner, and J. Muray, Sub-0.1-pm ion projection lithography (extended abstract). Conference on Solid State Devices and Materials, pp. 29–32, Tokyo (1986).Google Scholar
  125. 125.
    G. Stengl, H. Loschner, and J. Muray, Ion projection lithography, Solid State Technol. 29 (2), 119–126 (1986).Google Scholar
  126. 126.
    G. Stengl, H. Loschner, W. Maurer, and P. Wolf, Ion projection lithography for submicron modification of materials, Materials Research Soc. Fall Meeting, Boston (1984).Google Scholar
  127. 127.
    M. Ando, Preliminary experimental study of the multiple ion beam machine, J. Vac. Sci. Technol. B 6(6), 2120 (November-December, 1988).Google Scholar
  128. 128.
    J. J. Muray, Characteristics and applications of multiple beam machines, Microelectron. Eng. 9, 305 (1989).CrossRefGoogle Scholar
  129. 129.
    M. Ando and J. Muray, Spatial resolution limit for focused ion-beam lithography from secondary-electron energy measurements, J. Vac. Sci. Technol. B 6(3), 986 (May-June, 1988).Google Scholar
  130. 130.
    I. Adesida, A. Muray, M. Isaacson, and E. D. Wolf, in: Proc. Microcircuit Engineering ‘83 ( H. Ahmed, J. R. Cleaver, and G. A. C. Jones, eds., pp. 151–156, Academic Press, New York (1983).Google Scholar
  131. 131.
    M. Ando and J. Muray, Spatial resolution limit for focused ion-beam lithography from secondary-electron energy measurements, J. Vac. Sci. Technol. B 6(3), 986 (May-June, 1988).Google Scholar
  132. 132.
    C. D. W. Wilkinson, Nanofabrication, Microelectron. Eng. 6, 155 (1987).CrossRefGoogle Scholar
  133. 133.
    T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S.A. Rishton, and Y. Vladimirsky, Nanostructure technology, IBM J. Res. Dev. 32(4), 462 (July, 1988).Google Scholar
  134. 134.
    R. E. Howard and D. E. Prober, in: VLSI Electronics, Microstructure Science V (N.G. Einspruch, ed.), (1982).Google Scholar
  135. 135.
    E. D. Wolf, Nanofabrication: Opportunities for interdisciplinary research, Microelectron. Eng. 9, 5–11 (1989)CrossRefGoogle Scholar
  136. 136.
    K. A. Valiev, The Physics of Submicron Lithography, Plenum, New York (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ivor Brodie
    • 1
  • Julius J. Muray
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations