Advertisement

Layering Technologies

  • Ivor Brodie
  • Julius J. Muray
Chapter
Part of the Microdevices book series (MDPF)

Abstract

Planar technology requires that thin layers of materials be formed and patterned sequentially, commencing with a flat rigid substrate. The key aspects of each layer are its
  • Thickness

  • Interface properties

  • Structure, composition, and topography

  • Electronic properties

  • Optical properties

  • Mechanical properties

  • Chemical properties

Keywords

Epitaxial Layer Gallium Arsenide Laser Annealing proJected Range Recoil Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. T. J. Hurle, Current Growth Techniques in Crystal Growth, a Tutorial Approach, North-Holland, Amsterdam (1979).Google Scholar
  2. 2.
    M. Faraday, Experimental relations of gold (and other metals) to light, Philos. Trans. R. Soc. London 147, 145–181 (1857).CrossRefGoogle Scholar
  3. 3.
    M. K. Bolazs (ed.), Proc. Semiconductor Pure Water Conference,Santa Clara, Calif. (1982–1990).Google Scholar
  4. 4.
    H. E. Farnsworth, in: The Surface Chemistry of Metals and Semiconductors ( H. Gates, ed.), p. 21, Wiley, New York, (1959).Google Scholar
  5. 5.
    L. Holland, Vacuum Deposition of Thin Films, Chapman and Hall, London (1956).Google Scholar
  6. 6.
    L. I. Maissel and R. Glang (eds.), Handbook of Thin Film Technology, McGraw-Hill, New York (1970).Google Scholar
  7. 7.
    K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York (1969).Google Scholar
  8. 8.
    L. Eckertova, Physics of Thin Films, Plenum Press, New York (1977).CrossRefGoogle Scholar
  9. 9.
    J. C. Vossen and W. Kern (eds.), Thin Film Processes, Academic Press, New York (1978).Google Scholar
  10. 10.
    A. G. Cullis, Transient annealing of semiconductors by laser, electron beam and radiant heating techniques, Rep. Prog. Phys. 48, 1155–1233 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    D. W. Sah, in: Crystal Growth Theory and Techniques (C. H. Goodman, ed.), Vol. 1, Plenum Press, New York (1974).Google Scholar
  12. 12.
    R. M. Burger and R. P. Donovan (eds.), Fundamentals of Silicon Integrated Device Technology, Vol. 1, Prentice-Hall, Englewood Cliffs, N.J. (1967).Google Scholar
  13. 13.
    S. Nielsen and G. J. Rich, Preparation of epitaxial layers of silicon: I. Direct and indirect processes, Microelectron. Reliab. 1964, 165–170 (1964).Google Scholar
  14. 14.
    M. L. Hammond, Silicon epitaxy, Solid State Technol. 21(11), 68 (November, 1978).Google Scholar
  15. 15.
    R. W. Dutton, D. A. Antoniadis, J. D. Meindl, T. I. Kamins, K. C. Saraswat, B. E. Deal, and J. D. Plummer, Oxidation and epitaxy, Technical Report No. 5021–1, Integrated Circuit Laboratory, Stanford University, Stanford, Calif. ( May, 1977 ).Google Scholar
  16. 16.
    T. I. Kamins, R. Reif, and K. C. Saraswat, in: Electrochemical Society Fall Meeting, Las Vegas, October 17–22, 1976, pp. 601–603, Electrochemical Society, Princeton, N.J. (1976).Google Scholar
  17. 17.
    R. Reif, T. I. Kamins, and K. C. Saraswat, Transient and steady-state response of the dopant system of an epitaxial reactor: Growth rate dependence, Electrochem. Soc. J. 124 (8), 912–923 (1977).Google Scholar
  18. 18.
    J. D. Meindl, K. C. Saraswat, and J.D. Plummer, Semiconductor Silicon, pp. 894–909, Electrochemical Society, Princeton, N.J. (1977).Google Scholar
  19. 19.
    J. D. Meindl, K. C. Saraswat, R. W. Dutton, J. F. Gibbons, W. Tiller, J. D. Plummer, B. E. Deal, and T. I. Kamins, Final report on computer-aided semiconductor process modeling, Stanford Electronics Laboratories, Report TR-4969–73-F, Stanford University, Stanford, Calif. ( October, 1976 ).Google Scholar
  20. 20.
    R. Reif, T. I. Kamins, and K. C. Saraswat, A model for dopant incorporation into growing silicon epitaxial films, J. Electrochem. Soc. 126(4), 644 (April, 1979).Google Scholar
  21. 21.
    B. V. Vanderschmitt, Silicon-on-sapphire: An LSI/VLSI technology, RCA Eng. 24(1) (June-July, 1978 ).Google Scholar
  22. 22.
    S. Cristoloeanu, Silicon films on sapphire, Rep. Prog. Phys. 50, 327–371 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    L. Jastrzebski, Y. Imamura, and H. C. Gatos, Thickness uniformity of GaAs layers grown by electroepitaxy, J. Electrochem. Soc. 125(7), 1140 (July, 1978).Google Scholar
  24. 24.
    L. Jastrzebski, J. Lagowski, H. C. Gatos, and A. F. Witt, Liquid-phase electroepitaxy: Growth kinetics, J. Appl. Phys. 49(12), 5909 (December, 1978).Google Scholar
  25. 25.
    F. M. d’Heurle and P. Ho, in: Thin Films: Interdiffusion and Reactions ( J. M. Poate, J. Mayer, and K. N. Tu, eds.), pp. 243–303, Wiley, New York, (1978).Google Scholar
  26. 26.
    F. M. d’Heurle and R. Rosenberg, in: Physics of Thin Films, Vol. 7, pp. 257–310, Academic Press, New York (1973).Google Scholar
  27. 27.
    A. Y. Cho, Recent developments in molecular beam epitaxy (MBE), J. Vac. Sci. Technol. 16(2), 275 (March-April, 1979)Google Scholar
  28. M. B. Parish, Molecular beam epitaxy, Science 208, 916 (May, 1980 ).Google Scholar
  29. 28.
    B. A. Joyce, Molecular beam epitaxy, Rep. Prog. Phys. 48, 1637 (1985).ADSCrossRefGoogle Scholar
  30. 29.
    C. F. Powell, J. H. Oxley, and J. M. Blocher, Jr. (eds.), Vapor Deposition, Wiley, New York (1966).Google Scholar
  31. 30.
    C. E. Coates, Organic Metallic Compounds, Wiley, New York (1960).Google Scholar
  32. 31.
    J. B. Mooney and S. B. Radding, Spray pyrolysis processing, Rev. Mater. Sci. 12, 81–101 (1982).ADSCrossRefGoogle Scholar
  33. 32.
    R. R. Chamberlain and J. S. Skarman, Chemical spray deposition process for inorganic films, J. Electrochem. Soc. 113(1), 86–89 (January, 1966).Google Scholar
  34. 33.
    B. E. Deal and A. S. Grove, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36(12), 3770–3778 (December, 1965).Google Scholar
  35. 34.
    J. Blanc, A revised model for the oxidation of Si by oxygen, Appl. Phys. Lett. 33(5), 424 (September, 1978).Google Scholar
  36. 35.
    A. S. Grove, Physics and Technology of Semiconductor Devices, Wiley, New York (1967).Google Scholar
  37. 36.
    R. S. Ronen and P. H. Robinson, Hydrogen chloride and chlorine gathering. Effective technique for improving performance of silicon devices, J. Electrochem. Soc. 119 (6), 747–752 (1972).CrossRefGoogle Scholar
  38. 37.
    C. M. Osburn, Dielectric breakdown properties of silicon dioxide films grown in halogen and hydrogen-containing environments, J. Electrochem. Soc. 121 (6), 809–815 (1974).CrossRefGoogle Scholar
  39. 38.
    J. D. Meindl, K. C. Saraswat, R. W. Dutton, J. F. Gibbons, W. Tiller, J. D. Plummer, B. E. Deal, and T. I. Kamins, Computer aided engineering of semiconductor integrated circuits, Stanford University Integrated Circuit Laboratory, Report TR 4969–3, SEL-78–011, Stanford University, Stanford, Calif. ( February, 1978 ).Google Scholar
  40. 39.
    M. Maeda, H. Kamioka, and M. Takagi, in: Proceedings of the 13th Symposium on Semiconductors and IC Technology, Tokyo (November, 1977 ).Google Scholar
  41. 40.
    B. E. Deal, The current understanding of charges in the thermally oxidized silicon structure, J. Elecrochem. Soc. 121(6), 198C (June, 1974 ).Google Scholar
  42. 41.
    B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Trans. Electron Devices ED-27(3), 606 (March, 1980).Google Scholar
  43. 42.
    G. Lucovsky and D. J. Chadi, in: Physics of MOS Insulators, pp. 301–305, Pergamon Press, New York (1980).Google Scholar
  44. 43.
    A. S. Grove and E. H. Snow, A model for radiation damage in metal-oxide semiconductor structures, Proc. IEEE 54, 894 (June, 1966 ).Google Scholar
  45. 44.
    P. J. Jorgensen, Effect of an electric field on silicon oxidation, J. Chem. Phys. 37(4), 874 (August, 1962).Google Scholar
  46. 45.
    N. Cabrera and N. F. Mott, Theory of the oxidation of metals, Rep. Prog. Phys. 12, 163 (1948).ADSCrossRefGoogle Scholar
  47. 46.
    S. K. Ghandhi, The Theory and Practice of Microelectronics, Wiley, New York (1968).Google Scholar
  48. 47.
    B. I. Boltaks, Diffusion in Semiconductors, Academic Press, New York (1963).Google Scholar
  49. 48.
    A. R. Allnot, Statistical theories of atomic transport in crystalline solids, Rep. Prog. Phys. 50, 373472 (1987).Google Scholar
  50. 49.
    L. C. Kimerling and D. V. Lang, in: Lattice Defects in Semiconductors ( J. E. Whitehouse, ed.), Institute of Physics, London (1974).Google Scholar
  51. 50.
    G. Carter and W. A. Grant, Ion Implantation of Semiconductors, Arnold, London (1976).Google Scholar
  52. 51.
    B. L. Crowder (ed.), Ion Implantation in Semiconductors and Other Materials, Plenum Press, New York (1972).Google Scholar
  53. 52.
    J. W. Mayer, L. Eriksson, and J. A. Davies, Ion Implantation in Semiconductors, Silicon and Germanium, Academic Press, New York (1970).Google Scholar
  54. 53.
    J. F. Gibbons, Ion implantation in semiconductors-Part I: Range distribution theory and experiments, Proc. IEEE 56(3), 295–319 (March, 1968).Google Scholar
  55. 54.
    J. F. Gibbons, Ion implantation in semiconductors-Part II: Damage production and annealing, Proc. IEEE 60(9), 1062 (September, 1972).Google Scholar
  56. 55.
    J. Lindhard, M. Scharff, and H. Schiott, Atomic collisions II. Range concepts and heavy ion ranges, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 33 (14), 1 (1963).Google Scholar
  57. 56.
    J. Sansbury, Applications of ion implantation in semiconductor processing, Solid State Technol. 19(11), 31 (November, 1976).Google Scholar
  58. 57.
    J. Lindhard, Influence of crystal lattice on motion of energetic charged particles, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34 (14) (1965).Google Scholar
  59. 58.
    P. Sigmund and J. B. Saunders, in: Proceedings of the International Conference on Applications of Ion Beams to Semiconductor Technology, Grenoble, France (P. Glotin, ed.), p. 215 Editions Ophrys (1967).Google Scholar
  60. 59.
    J. H. Crawford, Jr., and L. M. Slifkin (eds.), Point Defects in Solids, Vol. 2, Plenum Press, New York (1972).Google Scholar
  61. 60.
    H. S. Rupprecht, New advances in semiconductor implantation, J. Vac. Sci. Technol. 15(5), 1669 (September-October, 1978).Google Scholar
  62. 61.
    J. Gibbons, W. S. Johnson, and S. Mylroie,Projected Range Statistics in Semiconductors, 2nd ed., Wiley, New York (1975); D. K. Brice, Ion Implantation Range and Energy Deposition Distributions, Plenum Press, New York (1975); K. B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, Vol. 2, Plenum Press, New York (1975).Google Scholar
  63. 62.
    L. A. Christel, J. F. Gibbons, and S. Mylroie, An application of the Boltzmann transport equation to ion range and damage distributions in multi-layered targets, J. Appl. Phys. 51(12), 6176 (December, 1980)Google Scholar
  64. D. H. Smith and J. F. Gibbons, Ion Implantation in Semiconductors, 1976, p. 333, Plenum Press, New York (1977)Google Scholar
  65. R. A. Moline, G. W. Reutlinger, and J. C. North, Proceedings of the Fifth International Conference on Atomic Collisions in Solids, Plenum Press, New York (1976).Google Scholar
  66. 63.
    Z. L. Liau and J. W. Mayer Limits of composition achievable by ion implantation, J. Vac. Sci. Technol. 15(5), 1629 (September-October, 1978).Google Scholar
  67. 64.
    I. Krafcsik, L. Kiralyhidi, P. Riedl, J. Gyulai, and M. Fried, Implantation with ion pulses, Phys. Status Solidi A 94, 855 (1986).ADSCrossRefGoogle Scholar
  68. 65.
    J. W. Cleland, K. Lark-Horovitz, and J. C. Pigg, Transmutation-produced germanium semiconductors, Phys. Rev. 78, 814 (1950).ADSCrossRefGoogle Scholar
  69. 66.
    H. M. Janus, in: Neutron Transmutation Doping in Semiconductors ( J. M. Meese, ed.), Plenum Press, New York (1978).Google Scholar
  70. 67.
    H. M. Janus and O. Malmros, Application of thermal neutron irradiation for large scale production of homogeneous phosphorus doping of float zone silicon, IEEE Trans. Electron Devices ED-23(8), 797 (August, 1976).Google Scholar
  71. 68.
    J. M. Meese, in: Neutron Transmutation Doping in Semiconductors ( J. M. Meese, ed.), Plenum Press, New York (1978).Google Scholar
  72. 69.
    S. Prussin and J. W. Cleland, Application of neutron transmutation doping for production of homogeneous epitaxial layers, J. Electrochem. Soc. 125(2), 350 (February, 1978 ).Google Scholar
  73. 70.
    M. I. Current, C. B. Yarling, and W. A. Keenan, in: Ion Implantation Science and Technology, 2nd ed. ( J. F. Ziegler, ed.), p. 377, Academic Press, New York (1988)Google Scholar
  74. L. A. Larson, A comparison of wafer resistivity probing tools, presented at the 7th International Conference on Ion Implantation Technology, Kyoto, Japan (June, 1988 ).Google Scholar
  75. 71.
    Implant Evaluation, Editorial, Semiconductor International 81 (November, 1988 ).Google Scholar
  76. 72.
    A. Rosencwaig, in: SRI Report, Microelectronics-Applications, Materials and Technology, Microscience #6 (1985).Google Scholar
  77. 73.
    A. Rosencwaig, in: VLSI Electronics: Microstructure Science, Vol. 9 ( N. G. Einspruch, ed.), p. 227, Academic Press, New York (1985).Google Scholar
  78. 74.
    A. Rosencwaig, in: SRI Report, Microelectronics-Photonics, Materials, Sensors, and Technology, Microscience #7 (1985).Google Scholar
  79. 75.
    T. Motooka and K. Watanabe, Damage profile determination of ion-implanted Si layers by ellipsometry, J. Appl. Phys. 51(8), 4125 (August, 1980 ).Google Scholar
  80. 76.
    W. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, Academic Press, New York (1978).Google Scholar
  81. 77.
    Y. E. Strausser, in: Proc. Fourth Natl. Vacuum Congress, pp. 469–472 (1968).Google Scholar
  82. 78.
    R. E. Honig, Vapor pressure data for the solid and liquid elements, RCA Rev. 23 (4), 567–586 (1962).Google Scholar
  83. 79.
    G. M. McCracken, The behavior of surfaces under ion bombardment, Rep. Prog. Phys. 38, 241327 (1975).Google Scholar
  84. 80.
    G. K. Wehner, Controlled sputtering of metals by low-energy Hg ions, Phys. Rev. 102 (3), 670–704 (1956).ADSCrossRefGoogle Scholar
  85. 81.
    G. Carter and J. S. Colligon, Ion Bombardment of Solids, Elsevier, Amsterdam (1968).Google Scholar
  86. 82.
    L. B. Loeb, Basic Processes of Gaseous Electronics, University of California Press, Berkeley (1955).Google Scholar
  87. 83.
    H. S. Butler and G. S. Kino, Plasma sheath formation by radiofrequency fields, Phys. Fluids 6(9), 1346 (September, 1963).Google Scholar
  88. 84.
    I. Brodie, C. T. Lamont, and D. O. Myers, Substrate bombardment during RF sputtering, J. Vac. Sci. Technol. 6 (1), 124 (1969).ADSCrossRefGoogle Scholar
  89. 85.
    T. A. Wade, Polyimides for use as VSCS multilevel interconnection, dielectric and passivation layer, SRI Ser. Microsci. Microelectron. 5, 59–130 (1983).Google Scholar
  90. 86.
    W. J. Daughton and F. L. Givens, An investigation of the thickness-variation of spun-on on thin films commonly associated with the semiconductor industry, J. Electrochem. Soc. Solid-State Sci. Technol. 129, 173–179 (January, 1985 ).Google Scholar
  91. 87.
    W. F. Flack, D. S. Soong, A. T. Bell, and D. W. Hess, A mathematical model for spin coating of polymers, J. Appl. Phys. 56, 1199–1206 (1984).ADSCrossRefGoogle Scholar
  92. 88.
    L. V. Gregor, Polymer dielectric film, IBM J. Res. Dev. 12(2), 140–162 (March, 1968).Google Scholar
  93. 89.
    R. M. Handy and L. C. Scala, Electrical and structural properties of Langmuir films, J. Electrochem. Soc. 113, 105–115 (1966).CrossRefGoogle Scholar
  94. 90.
    G. G. Roberts, An applied science perspective of Langmuir-Blodgett films, Adv. Phys. 34, 475–512 (1985)ADSCrossRefGoogle Scholar
  95. R. H. Tredgold, The physics of Langmuir Blodgett films, Rep. Prog. Phys. 50, 1609–1656 (1987).ADSCrossRefGoogle Scholar
  96. 91.
    H. E. Ries, Monomolecular films, Sci. Am. 204, 152 (1961).CrossRefGoogle Scholar
  97. 92.
    A. T. Bell, Fundamentals of plasma chemistry, J. Vac. Sci. Technol. 16(2), 418–419 (March-April 1979 ).Google Scholar
  98. 93.
    H. Yasuda, Plasma Polymerization, Academic Press, New York (1985).Google Scholar
  99. 94.
    H. K. Yasuda, Competitive ablation and polymerization (CAP) mechanisms of glow discharge polymerization, ACS Symp. Ser. 108, 37–52 (1979).CrossRefGoogle Scholar
  100. 95.
    E. B. Priestley, P. J. Wojtowicz, and P. Sheng, Introduction to Liquid Crystals, Plenum Press, New York (1975).Google Scholar
  101. 96.
    F. J. Kahn, G. N. Taylor, and H. Schanhorn, Surface-Produced alignment of liquid crystals, Proc. IEEE 61, 823 (1973).CrossRefGoogle Scholar
  102. 97.
    G. J. Sprokel (ed.), The Physics and Chemistry of Liquid Crystal Devices, Plenum Press, New York (1980).Google Scholar
  103. 98.
    M. F. Schiekel and K. Fahrenschon, Deformation of nematic liquid crystals with vertical orientation in electrical fields, Appl. Phys. Lett. 19, 391 (1971).ADSCrossRefGoogle Scholar
  104. 99.
    E. Kaneko, Liquid crystal matrix displays, Advances in Image Pick Up and Displays 4, 1–86 (1981).Google Scholar
  105. 100.
    L. E. Tannas, Jr. (ed.), Flat Panel Displays and CRTs, Van Nostrand-Reinhold, Princeton, N.J. (1985).Google Scholar
  106. 101.
    D. B. Lee, Anisotropic etching of silicon, J. Appl. Phys. 40, 4569–4574 (1969).ADSCrossRefGoogle Scholar
  107. 102.
    E. Bassons, Fabrication of novel three-dimensional microstructures by anisotropie etching of 100 and 110 silicon, IEEE Trans. Electron Devices ED-25(10), 1178–1185 (October, 1978 ).Google Scholar
  108. 103.
    K. E. Bean, Anisotropic etching of silicon, IEEE Trans. Electron Devices ED-25(10), 1185–1193 (October, 1978 ).Google Scholar
  109. 104.
    R. L. Bersin and R. F. Reichelderfer, The dryox process for etching silicon dioxide, Solid State Technol. 20(41), 78–80 (April, 1977 ).Google Scholar
  110. 105.
    H. R. Kaufman, Technology of electron-bombardment ion thrusters, Adv. Electron. Electron Phys. 36, 265–373 (1974).CrossRefGoogle Scholar
  111. 106.
    R. G. Poulsen, Plasma etching in IC manufacture-A review, J. Vac. Sci. Technol. 14(1), 266–274 (January-February, 1977 ).Google Scholar
  112. 107.
    R. Kumar, C. Tadas, and G. Hudson, Characterization of plasma etching for semiconductor applications, Solid State Technol. 19(10), 54–59 (October, 1976).Google Scholar
  113. 108.
    J. W. Coburn and H. F. Winters, Plasma etching-A discussion of mechanisms, J. Vac. Sci. Technol. 16,391 (March-April, 1979 ).Google Scholar
  114. 109.
    A. E. Bell, Review and analysis of laser annealing, RCA Rec. 40, 295 (September, 1979 ).Google Scholar
  115. 110.
    R. T. Young, C. W. White, G. J. Clark, J. Narayan, W. H. Christie, M. Murakami, P. W. King, and S. D. Kramer, Laser annealing of boron-implanted silicon, Appl. Phys. Lett. 32(3), 1139 (February, 1978).Google Scholar
  116. 111.
    G. K. Celler, J. M. Poate, and L. C. Kimerling, Spatially controlled crystal growth regrowth of ion-implanted silicon by laser irradiation, Appl. Phys. Lett. 32(8), 464 (April, 1978).Google Scholar
  117. 112.
    P. Baeri, S. U. Campisano, G. Foti, and E. Rimini, Arsenic diffusion in silicon melted by high-power nanosecond laser pulsing, Appl. Phys. Lett. 33(2), 137 (July, 1978).Google Scholar
  118. 113.
    J. C. Muller, A. Grob, J. T. Grob, R. Stuck, and P. Siffert, Laser-beam annealing of heavily damaged implanted layers on silicon, Appl. Phys. Lett. 33(4), 287 (August, 1978).Google Scholar
  119. 114.
    A. Gat, J. F. Gibbons, T. J. Magee, J. Peng, P. Williams, V. Define, and C. A. Evans, Jr., Use of a scanning cw Kr laser to obtain diffusion-free annealing of B-implanted silicon, Appl. Phys. Lett. 33(5), 389 (September, 1978).Google Scholar
  120. 115.
    T. N. C. Venkatesan, J. A. Golovchenko, J. M. Poate, P. Cowen, and G. K. Celler, Dose dependence in the laser annealing of arsenic-implanted silicon, Appl. Phys. Lett. 33(5), 429 (September, 1978).Google Scholar
  121. 116.
    C. W. White, W. H. Cristie, B. R. Appleton, S. R. Wilson, P. P. Pronko, and C. W. Magee, Redistribution of dopants in ion-implanted silicon by pulsed-laser annealing, Appl. Phys. Lett. 33(7), 662 (October, 1978).Google Scholar
  122. 117.
    P. Baeri, S. U. Campisano, G. Foti, and E. Rimini, A melting model for pulsing-laser annealing of implanted semiconductors, J. Appl. Phys. 50(2), 788 (February, 1979 ).Google Scholar
  123. 118.
    D. H. Auston, J. A. Golovchenko, and T. N. C. Venkatesan, Dual-wavelength laser annealing, Appl. Phys. Lett 34(9), 558 (May, 1979).Google Scholar
  124. 119.
    S. S. Lau, J. W. Mayer, and W. F. Tseng, Comparison of laser and thermal annealing of implanted-amorphous silicon in laser-solid interactions and laser processing, AIP Conf. Proc. No. 50 (1979).Google Scholar
  125. 120.
    A. Gat and J. F. Gibbons, A laser-scanning apparatus for annealing of ion-implantation damage in semiconductors, Appl. Phys. Len. 32(3), 142 (February, 1978).Google Scholar
  126. 121.
    R. B. Fair, Modelling laser-induced diffusion of implanted arsenic in silicon, J. Appl. Phys. 50(10), 6552 (October, 1979).Google Scholar
  127. J. R. Lineback, How lasers will give chip making a big boost, Electronics 59 (1), 70–72 (1986).Google Scholar
  128. 123.
    L. L. Burns, Laser pantography, in: Wafer Scale Integration ( G. Saucier and J. Trilhe, eds.), Elsevier/North-Holland, Amsterdam (1986).Google Scholar
  129. 124.
    M. W. Geis, D. C. Flanders, and H. I. Smith, Crystallographic orientation of silicon on an amorphous substrate using an artificial surface-relief grating and laser crystallization, Appl. Phys. Lett. 35(1), 71–74 (July, 1979).Google Scholar
  130. 125.
    E. I. Givargizov, Oriented Crystallization on Amorphous Substrates, Plenum Press, New York (1991).Google Scholar
  131. 126.
    M. W. Geis, D. C. Flanders, H. I. Smith, and D. A. Antoniadis, Grapho-epitaxy of silicon on fused silica using surface micropatterns and laser crystallization, J. Vac. Sci. Technol. 16(6), 1640 (November-December, 1979).Google Scholar
  132. 127.
    V. I. Klykov and N. N. Sheftal, Diataxial growth of silicon and germanium, J, Cryst. Growth 52, 687 (1981). E. Kaldis (ed.), Current Topics in Materials Science, Vol. 10, pp. 1–53, North-Holland, Amsterdam (1982).Google Scholar
  133. 128.
    S. Rice and J. Jain, Reciprocity behavior of photoresists in excimer laser lithography, IEEE Trans. Electron Devices EDO-5(2), 32–35 (1984).Google Scholar
  134. 129.
    D. J. Ehrlich, J. Y. Tsao, D. J. Silversmith, J. H. C. Sedlacek, R. W. Mountain, and W. G. Graber, Laser micromachining techniques for reversible restructuring of gate-array prototype circuits, IEEE Electron Device Lett. EDL-5(2), 32–35 (1984).Google Scholar
  135. 130.
    D. J. Ehrlich and J. Y. Tsao, in: VLSI Electronics: Microstructure Science, Vol. 7, Academic Press, New York (1983).Google Scholar
  136. 131.
    Y. S. Liu, C. P. Yakymyshyn, H. R. Phillip, H. S. Cole, and L. M. Levinson, Laser-induced selective deposition of micron-sized structures on silicon, J. Vac. Sci. Technol. B3 (5), 1441–1444 (1985).CrossRefGoogle Scholar
  137. 132.
    L. Waller, Cut-and-patch lasers speed chip repairs, Electronics 59 (24), 19–20 (1986).Google Scholar
  138. 133.
    K. A. Jones, Laser assisted MOCVD growth, Solid State Technol. 28 (10), 151–156 (1985).Google Scholar
  139. 134.
    C. D. Rose, Laser writing takes a step forward, Electronics 59 (23), 15 (1986).Google Scholar
  140. 135.
    L. L. Burns and A. R. Elsea, in: Wafer Scale Integration ( G. Saucier and J. Trilhe, eds.), Elsevier/ North-Holland, Amsterdam (1986).Google Scholar
  141. 136.
    B. M. McWilliams, I. P. Herman, F. Mitlitsky, R. A. Hyde, and L. L. Wood, Wafer-scale laser pantography: Fabrication of n-metal-oxide semiconductor transistors and small-scale integrated circuits by direct-write laser-induced pyrolytic reactions, Appl. Phys. Lett. 43 (10), 946–948 (1983).ADSCrossRefGoogle Scholar
  142. 137.
    D. J. Ehrlich, Early applications of laser direct patterning: Direct writing and excimer projection, Solid State Technol. 28 (12), 81–85 (1985).Google Scholar
  143. 138.
    A. R. Kirkpatrick, J. A. Minnucci, and A. C. Greenwald, Silicon solar cells by high-speed low-temperature processing, IEEE Trans. Electron Devices ED-24(4), 429 (April, 1977).Google Scholar
  144. 139.
    R. G. Little and A. C. Greenwald, An advancement in semiconductor processing, Semicond. Int. 2(1), 81 (January-February, 1979).Google Scholar
  145. 140.
    K. N. Ratnakumar, R. F. W. Pease, D. J. Bartelink, and N. M. Johnson, Scanning electron beam annealing with a modified SEM, J. Vac. Sci. Technol. 16(6), 1843 (November-December, 1979).Google Scholar
  146. 141.
    A. Neukermans and W. Saperstein, Modeling of beam voltage effects in electron-beam annealing, J. Vac. Sci. Technol. 16(6), 1847 (November-December, 1979).Google Scholar
  147. 142.
    L. A. Wasselle, Electron Beam Curing of Polymers, Process Economics Program, Report 116, Stanford Research Institute, Menlo Park, Calif. (1977).Google Scholar
  148. 143.
    C. K. Crawford, Electron beam machining, in: Introduction to Electron Beam Technology ( R. Bakish, ed.), Wiley, New York (1962).Google Scholar
  149. 144.
    T. Ichihashi and S. Matsui, In situ observation on electron beam induced chemical vapor deposition by transmission electron microscopy, J. Vac. Sci. Technol. B6(6), 1869–1872 (November-December, 1988).Google Scholar
  150. 145.
    M. A. McCord, D. P. Kern, and T. H. P. Chang, Direct deposition of 10-nm metallic features with the scanning tunneling microscope, J. Vac. Sci. Technol. B6(6), 1877–1880 (November-December, 1988 ).Google Scholar
  151. 146.
    S. Matsui and K. Mori, New selective deposition technology by electron beam induced surface reaction, J. Vac. Sci. Technol. B4(1), 299 (January-February, 1986 ).Google Scholar
  152. 147.
    L. R. Harriott, in: VLSI Electronics: Microstructure Science, Vol. 21, Academic Press, New York (1989).Google Scholar
  153. 148.
    J. Melngailis, Focused ion beam technology and applications, J. Vac. Sci. Technol. B5(2), 469 (March-April, 1987 ).Google Scholar
  154. 149.
    A. J. Muray and J. J. Muray, Microfabrication with ion beams, Vacuum 35 (10–11), 467–477 (1985).CrossRefGoogle Scholar
  155. 150.
    W. L. Brown, Recent progress in ion beam lithography, Microelectron. Eng. 9, 269–276 (1989).CrossRefGoogle Scholar
  156. 151.
    I. H. Wilson, The topography of ion bombarded surfaces, Proc. Int. Eng. Congr. ISIAT and IPAT, Kyoto, Japan (1983).Google Scholar
  157. 152.
    R. L. Kubena, R. L. Seliger, and E. H. Stevens, High resolution using a focused ion beam, Thin Solid Films 92, 165–169 (1982).ADSCrossRefGoogle Scholar
  158. 153.
    H. Yamaguchi, A. Shimase, S. Haraichi, and T. Miyauchi, Characteristics of silicon removal by fine focused gallium ion beam, J. Vac. Sci. Technol. B3(1), 71–74 (January-February, 1985 ).Google Scholar
  159. 154.
    H. Morimoto, Y. Sasaki, Y. Watakabe, and T. Kato, Characteristics of submicron patterns fabricated by gallium focused-ion-beam, J. Appl. Phys. 57(1), 159–160 (January, 1985 ).Google Scholar
  160. 155.
    A. Macrander, D. Barr, and A. Wagner, Resist possibilities and limitations in ion beam lithography, SPIE Conf. 33, 142–151 (1982).Google Scholar
  161. 156.
    J. Melngailis, C. R. Musil, E. H. Stevens, M. Utlaut, E. M. Kellogg, R. T. Post, M. W. Geis, and R. W. Mountain, The focused ion beam as an integrated circuit restructuring tool, J. Vac. Sci. Technol. B4(1), 176–180 (January-February, 1986 ).Google Scholar
  162. 157.
    A. Wagner, Applications of focused ion beams, Nuclear Instrum. Methods Phys. Res. 218, 355 (1983).ADSCrossRefGoogle Scholar
  163. 158.
    J. E. Jenson, Ion beam resists, Solid State Technol. 1984, 145–150 (June, 1984 ).Google Scholar
  164. 159.
    M. Komuro, N. Atoda, and H. Kawakatsu, Ion beam exposure of resist materials, J. Electrochem. Soc. Solid-State Sci. Technol. 126(3), 483–490 (March, 1979 ).Google Scholar
  165. 160.
    J. Melngailis, in: SRI Report, Microelectronics-Photonics, Materials, Sensors and Technology, Vol. 10.Google Scholar
  166. 161.
    J. S. Williams, Materials modification with ion beams, Rep. Prog. Phys. 49, 491–587 (1986).ADSCrossRefGoogle Scholar
  167. 162.
    I. Yamada, I. Nagai, M. Horie, and T. Takagi, Preparation of doped amorphous silicon films by ionized cluster-beam deposition, J. Appl. Phys. 54, 1583–1587 (1983).ADSCrossRefGoogle Scholar
  168. 163.
    J. A. Venables, G. D. T. Spiller, and M. Hanbruken, Nucleation and growth of thin films, Rep. Prog. Phys. 47, 399–459 (1985).ADSCrossRefGoogle Scholar
  169. 164.
    J. P. Hirth and G. M. Pound, Condensation and Evaporation: Nucleation and Growth Kinetics, Macmillan Co., New York (1963).Google Scholar
  170. 165.
    D. Walton, T. N. Rhodin, and R. Rollins, Nucleation of silver on sodium chloride, J. Chem. Phys. 38(11), 2698 (June, 1963 ).Google Scholar
  171. 166.
    G. Zinsmeister, in: Basic Problems in Thin-Film Physics ( R. Neidermayer and H. Mayer, eds.), p. 33, Vandenhoeck and Ruprecht, Göttingen (1966).Google Scholar
  172. 167.
    H. J. Poppa, Heterogeneous nucleation of Bi and Ag on amorphous substrates, J. Appl. Phys. 38(10), 3883 (September, 1967 ).Google Scholar
  173. 168.
    K. L. Chopra, Growth of thin metal films under applied electric field, Appl. Phys. Lett. 7(5) 140 (September, 1965 ).Google Scholar
  174. 169.
    K. Nishiyama, M. Arai, and L. N. Watanabe, Radiation annealing of boron implanted silicon with a halogen lamp, Jpn. J. Appl. Phys. Lett. 19 (10), 256 (1980).CrossRefGoogle Scholar
  175. 170.
    R. Singh, Rapid isothermal processing, J. Appl. Phys. 63(8), R59–R114 (April, 1988 ).Google Scholar
  176. 171.
    J. Nulman and J. P. Krusius, Rapid thermal processing of thin gate dielectrics, nitridation of thermal oxides, IEEE 1984 IDEM Technical Digest, San Francisco (1984).Google Scholar
  177. 172.
    W. G. Pfann, Temperature gradient zone melting, J. Met. 1955, 961–964 (September, 1955 ).Google Scholar
  178. 173.
    T. R. Anthony and H. E. Cline, Lamellar devices processed by thermomigration, J. Appl. Phys. 48, 3943–3949 (1977).ADSCrossRefGoogle Scholar
  179. 174.
    M. J. Rand, Plasma-promoted deposition of thin inorganic films, J. Vac. Sci. Technol. 16(2), 420–427 (March/April, 1979 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ivor Brodie
    • 1
  • Julius J. Muray
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations