Visual Data Formatting

  • Ulrich Raff


A deeper understanding of the perception of visual information has puzzled researchers from a wide range of scientific disciplines including physiology, neurophysiology, neuroanatomy, mathematics, psychology, physics, and computer sciences. Although human vision is quite well described at a neuroanatomical level, the information processing tasks performed by the retina and the visual cortex of the brain remain largely unclear. The computational paradigms of biological vision are simply not understood.


Gray Level Idiopathic Pulmonary Fibrosis Edge Detection Machine Vision Visual Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    Gonzalez R.C., Wintz P. Digital Image Processing. Reading: Addison–Wesley; 1977.MATHGoogle Scholar
  2. 7.2
    Pizer S.M., Zimmerman J.B., Staab E.V. Adaptive gray level assignment in CT scan display. J. Comput. Asst. Tomog 1984; 8: 300–305.Google Scholar
  3. 7.3
    Zimmerman J.B., Pizer S.M., Staab E.V., Perry J.R., McCartney W., Brenton B.C. An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans. Med. Imag 1988; MI-7: 304–312.CrossRefGoogle Scholar
  4. 7.4
    Zimmerman J.B., Cousins S.B., Hartzell K.M., Frisse E., Kahn M.G. A psycho-physical comparison of two methods for adaptive histogram equalization. J. Digital Imag 1989; 2: 82–91.CrossRefGoogle Scholar
  5. 7.5
    Pizer S.M., Amburn E.P., Austin J.D., Cromartie R., Geselowitz A., Greer T. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Imag. Proc 1987; 39: 355–368.CrossRefGoogle Scholar
  6. 7.6
    Jain A.K. Advances in mathematical models for image processing. Proc. IEEE 1981; 69: 502–527.CrossRefGoogle Scholar
  7. 7.7
    Jain A.K. Fundamentals of Digital Image Processing. Englewood Cliffs: Prentice Hall; 1989.MATHGoogle Scholar
  8. 7.8
    Gibson J.J. The Perception of the Visual World. Boston: Houghton Mifflin; 1952.Google Scholar
  9. 7.9
    Haralick R.M. Statistical and structural approaches to texture. Proc. IEEE 1979; 67: 786–804.CrossRefGoogle Scholar
  10. 7.10
    Resnikoff H.L. The Illusion of Reality. New York: Springer; 1989.MATHCrossRefGoogle Scholar
  11. 7.11
    Julesz B. Textons, the elements of texture perception, and their interactions. Nature 1981; 290: 91–97.CrossRefGoogle Scholar
  12. 7.12
    Julesz B., Schumer R.A. Early visual perception. Annu. Rev. Psychol 1981; 32: 575–627.CrossRefGoogle Scholar
  13. 7.13
    Julesz B., Frisch H.L., Gilbert E.N., Shepp L.A. Inability of humans to discriminate between visual textures that agree in second order statistics—revisted. Perception 1973; 2: 391–405.CrossRefGoogle Scholar
  14. 7.14
    Hawkins J.K. Textural properties for pattern recognition. In: Lipkin B.S., Rosen-feld A., eds. Picture Processing and Psychopictorics. New York: Academic; 1970: 347–370.Google Scholar
  15. 7.15
    Kruger R.P., Thompson W.B., Turner A.F. Computer diagnosis of pneumoconiosis. IEEE Trans. Syst. Man. Cyberg 1974; SMC-4: 40–49.Google Scholar
  16. 7.16
    Sutton R.N., Hall E.L. Texture measures for automatic classification of pulmonary disease. IEEE Trans. Comput 1972; C-2: 667–676.CrossRefGoogle Scholar
  17. 7.17
    Mandelbrot B.B. The Fractal Geometry of Nature. New York: Freeman; 1982.MATHGoogle Scholar
  18. 7.18
    Pentland A.P. Fractal surface models for communication about terrain. Proc. SPIE 1987; 845: 301–306.CrossRefGoogle Scholar
  19. 7.19
    Pentland A.P. Fractal based description of natural scenes. IEEE Trans. Patt. Anal. Mach. Intel! 1984; PAMI-6: 661–674.CrossRefGoogle Scholar
  20. 7.20
    Barnsley M.F., Deraney R.L., Mandelbrot B.B., Peitgen H.O., Saupe D., Voss R.F. The Science of Fractal Images. New York: Springer; 1988.MATHCrossRefGoogle Scholar
  21. 7.21
    Barnsley M. Fractals Everywhere. New York: Academic; 1988.MATHGoogle Scholar
  22. 7.22
    Lundahl T., Ohley W.J., Kay S.M., Siffert R. Fractional Brownian motion: A maximum likelihood estimator and its application to image texture. IEEE Trans. Med. Imag 1986; MI-5: 152–161.CrossRefGoogle Scholar
  23. 7.23
    Lundahl T., Ohley W.J., Kublinski W.S., Williams D.O., Gerwirtz H., Most M.S. Analysis and interpretation of angiographic images by use of fractals. In: Computers in Cardiology. New York: IEEE; 1985: 355–358.Google Scholar
  24. 7.24
    Chen C.C., Daponte J.S., Fox M.D. Fractal feature analysis and classifiction in medical imaging. IEEE Trans. Med. Imag 1989; MI-8: 133–142.CrossRefGoogle Scholar
  25. 7.25
    Nelson T.R., Manchester D.K. Modeling of lung morphogenesis using fractal geometries. IEEE Trans. Med. Imag 1988; MI-7: 321–327.CrossRefGoogle Scholar
  26. 7.26
    Caldwell C.B., Stapelton S.J., Holdsworth D.W., Jong R.A., Weiser W.J., Cooke G. Characterization of mammographie parenchymal pattern by fractal dimension. Phys. Med. Biol 1990; 35: 235–247.CrossRefGoogle Scholar
  27. 7.27
    Cargill E.B., Donohoe K.J., Kolodny G., Parker A.J., Duane P. Estimation of fractal dimension of parenchymal organs based on power spectral analysis in nuclear medicine scans. In: Ortendahl D.A., Llacer J., eds. Proc. 11th Int. Conf. Inform. Proc. Med. Imag. 1991; 557–570.Google Scholar
  28. 7.28
    Barnsley M.F., Demko S. Iterated function systems and the global construction of fractals. Proc. R. Soc. London A 1985; 399: 243–275.MathSciNetMATHCrossRefGoogle Scholar
  29. 7.29
    Barnsley M.F., Ervin V., Hardlin D., Lancaster J. Solution of an inverse problem for fractals and other sets. Proc. Natl. Acad. Sci 1985; 85: 1975–1977.Google Scholar
  30. 7.30
    Attneave F. Some informational aspects of visual perception. Psycho!. Rev 1954; 61: 183–193.CrossRefGoogle Scholar
  31. 7.31
    Marr D. Vision. New York: Freeman; 1982.Google Scholar
  32. 7.32
    Hubel D.H., Weisel T.N. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. London 1962; 160: 106–154.Google Scholar
  33. 7.33
    Hubel D.H., Weisel T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. London 1968; 195: 215–243.Google Scholar
  34. 7.34
    Blake A., Zisserman A. Visual Reconstruction. Cambridge: MIT; 1987.Google Scholar
  35. 7.35
    Pratt W.K. Digital Image Processing ( 2nd ed. ). New York: Wiley; 1991.MATHGoogle Scholar
  36. 7.36
    Duda R.O., Hart P.E. Pattern Classification and Scene Analysis. New York: Wiley; 1973.MATHGoogle Scholar
  37. 7.37
    Canny J.F. Finding Edges and Lines in Images (S.M. thesis). Cambridge: MIT; 1983.7. Visual Data Formatting 201Google Scholar
  38. 7.38
    Marr D., Hildreth E. Theory of edge detection Proc. R. Soc. London B 1980; 207: 187–217CrossRefGoogle Scholar
  39. 7.39
    Kirsch R. Computer determination of the constituent structure of biological images Comput. Biomed. Res. 1971; 4: 315–328CrossRefGoogle Scholar
  40. 7.40
    Rosenfeld A. A nonlinear edge detection technique. Proc. IEEE Lett 1970; 58: 814–816.CrossRefGoogle Scholar
  41. 7.41
    Jain A.K., Ranganath S. Image restoration and edge extraction based on 2D stochastic models. Proc. Int. Conf. Acoust. Speech Sig. Process. (Vol.3). Paris; 1982: 1520–1523.Google Scholar
  42. 7.42
    Haralick R.M. Edge and region analysis for digital image data Comput. Graph. Imag. Process. 1980; 12: 60–73CrossRefGoogle Scholar
  43. 7.43
    Hueckel M.H. An operator which locates edges in digitized pictures J. Assoc. Comput. Mach. 1971; 18: 113–125MATHCrossRefGoogle Scholar
  44. 7.44
    Blake A„ Zisserman A. Some properties of weak continuity constraints and the GNC algorithm. Proc. IEEE Conf. Comput. Vision Patt. Recogn 1986; 656–661.Google Scholar
  45. 7.45
    Hildreth E.C. Implementation of a Theory of Edge Detection (M.S. thesis). Cambridge: MIT; 1980.Google Scholar
  46. 7.46
    Wilson H.R., Giese S.C. Threshold visibility of frequency gradient patterns Vision Res. 1977; 17: 1177–1190CrossRefGoogle Scholar
  47. 7.47
    Wilson H.R., Bergen J.R. A four mechanism model for spatial vision Vision Res. 1979; 19: 19–32CrossRefGoogle Scholar
  48. 7.48
    Harmon L.D., Julesz B. Masking in visual recognition: Effects of two-dimensional filtered noise. Science 1973; 180: 1194–1197.CrossRefGoogle Scholar
  49. 7.49
    Terzopoulos D. Multilevel computational processes for visual surface reconstruction Comput. Vis. Graph. Imag. Proc. 1983; 24: 52–96Google Scholar
  50. 7.50
    Grimson W.E.L. From Images to Surfaces. Cambridge: MIT; 1981.Google Scholar
  51. 7.51
    Brandt A. Multilevel adaptive solutions to boundary value problems Math. Comput . 1977; 31: 333–390Google Scholar
  52. 7.52
    Briggs W.L. A Multigrid Tutorial. Philadelphia: Society for Industrial and Applied Mathematics; 1987.MATHGoogle Scholar
  53. 7.53
    Grossberg S. Nonlinear neural networks; principles, mechanisms, and architectures. Neural Nets 1988; 1: 17–61.CrossRefGoogle Scholar
  54. 7.54
    Kohonen T. An introduction to neural computing. Neural Nets 1988; 1: 3–16.CrossRefGoogle Scholar
  55. 7.55
    Carpenter G.A. Neural network models for pattern recognition and associative memory. Neural Nets 1989; 2: 243–257.CrossRefGoogle Scholar
  56. 7.56
    Fukushima K. A neural network for visual pattern recognition IEEE Trans. Comput. 1988; C-21: 65–75MathSciNetGoogle Scholar
  57. 7.57
    Fukishuma K. Analysis of the process of visual pattern recognition by neocognition. Neural Nets 1989; 2: 413–420.CrossRefGoogle Scholar
  58. 7.58
    Rumelhart D.E., McClelland J.L., PDP Research Group Parallel Distributed Processing (Vol. 1) . Cambridge: MIT; 1986Google Scholar
  59. 7.59
    Kohonen T. Associative Memory. A Systematic Theoretical Approach. Berlin: Springer; 1977.CrossRefGoogle Scholar
  60. 7.60
    Kohonen T. Self-organization and Associative Memory ( 2nd ed ). Berlin: Springer; 1987.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ulrich Raff

There are no affiliations available

Personalised recommendations