Renal Transplantation for Diabetic Nephropathy

  • Eli A. Friedman


Registries listing the demographics of end-stage renal disease (ESRD) in the United States (US), Japan, and most nations in industrialized Europe show that diabetes mellitus, in 1998, is the leading cause of renal failure world-wide. More than a decade ago, Mauer and Chavers presciently predicted that “Diabetes is the most important cause of ESRD in the Western World [1]”. Furthermore, in every European and North American registry of renal failure patients, both the incidence and prevalence of diabetic patients has risen continuously over the past ten years. According to the most recent (1997) report of the United States Renal Data System (USRDS), of 257,266 US patients undergoing either dialytic therapy or a kidney transplant in 1995, 80,667 had diabetes [2], a prevalence rate of 31.4%. Moreover, of 71,875 new (incident) cases of ESRD in 1995, 28,740 (40%) had diabetes (figure 50–1).


Diabetes Type Diabetic Nephropathy Kidney Transplant ESRD Patient United States Renal Data System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mauer SM, Chavers BM A comparison of kidney disease in type I and type II diabetes. Adv Exp Med Biol 1985; 189:299–303.PubMedGoogle Scholar
  2. 2.
    US Renal Data System, USRDS 1997 Annual Report. The National Institutes of Health, National Institute of Diabetes and Digestive And Kidney Diseases. Bethesda, MD, April 1997.Google Scholar
  3. 3.
    Chavamian M, Gutch CF, Kopp KF, Kolff WJ.. The sad truth about hemodialysis in diabetic nephropathy. JAMA 1972; 222: 1386–1389.CrossRefGoogle Scholar
  4. 4.
    Lemmer ER, Swanepoel CR, Kahn D, van-Zyl-Smit R. Transplantation for diabetic nephropathy at Groóte Schuur Hospital. S Afir Med J 1993; 83: 88–90.Google Scholar
  5. 5.
    Basadonna G, Matas AJ, Gillingjiam K, Sutherland DE, Payne WD, Dunn DI, Gores PF, Gruessner RW, Arrazola I, Najarían JS. Kidney transplantation in patients with type I diabetes: 26 years experience at the University of Minnesota. Clinical Transplants 1992. 1993. Paul I, Terasaki JM, Cecka Eds. UCLA Tissue Typing Laboratory, Los Angeles, Cal., pp 227–235.Google Scholar
  6. 6.
    Lowder GM, Perri NA, Friedman EA Demographics, diabetes type, and degree of rehabilitation in diabetic patients on maintenance hemodialysis in Brooklyn. J Diabetec Complications, 1988; 2: 218–226.CrossRefGoogle Scholar
  7. 7.
    Nagai N. Clinical statistics of 551 patients with diabetes mellitus found before 30 years of age. J Tokyo Worn Med Coll. 1982; 52:904–915.Google Scholar
  8. 8.
    The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997; 20:1183–1197.Google Scholar
  9. 9.
    Mogensen CE. Management of early nephropathy in diabetic patients. Annu Rev Med 1995; 46:79–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Christensen CK, Christiansen JS, Schmitz A, Christensen T, Hermansen K, Mogensen CE. Effect of the continuous subcutaneous insulin infusion on kidney function and size in type 1 patients. A 2 year controlled study. J Diab Compl 1987; 1: 91–95.Google Scholar
  11. 11.
    Mogensen CE. Angiotensin converting enzyme inhibitors and diabetic nephropathy. BMJ 1992; 304:327–328.PubMedCrossRefGoogle Scholar
  12. 12.
    Balodimus MC. Diabetic nephropathy. In “Joslin’s Diabetes” (Eds Marble A, White P, Bradley RF, Krall LP) Lea and Febiger, Philadelphia 1971; pp 526–561.Google Scholar
  13. 13.
    Grenfell A, Watkins PJ. Clinical diabetic nephropathy: natural history and complications. Clin Endocrin Metab, 1986; 15: 783–805.CrossRefGoogle Scholar
  14. 14.
    Humphrey LL, Ballard DJ, Frohnert PP, Chu CP, O’Fallon WM, Palumbo PJ. Chronic renal failure in non-insulin-dependent diabetes mellitus. Ann Intern Med 1989; 10: 788–796.CrossRefGoogle Scholar
  15. 15.
    Hasslacher CH, Ritz E, Wahl P, Michael C. Similar risks of nephropathy in patients with type I ortype II diabetes mellitus. Nephrol Dial Transplant, 1989; 4: 859–863.PubMedGoogle Scholar
  16. 16.
    Neu S, Kjellstrand CM. Stopping long4erm dialysis. An empirical study of withdrawal of life-supporting treatment N Engl J Med 1986; 314: 14–20PubMedCrossRefGoogle Scholar
  17. 17.
    Khauli RB, Steinmuller DR, Novick AC et al. A critical look at survival of diabetics with end-stage renal disease: Transplantation versus dialysis therapy. Transplantation, 1986; 41: 598–602.PubMedCrossRefGoogle Scholar
  18. 18.
    Rettig and Levinsky (ed.) Institute for Medicine (US) Kidney failure and the federal government access to kidney transplantation. Nat Academy of Sciences, 1991; p 167–186.Google Scholar
  19. 19.
    Cecka JM, Terasaki PL The UNOS Scientific Renal Transplant Registry — 1991. Clinical Transplants 1991 (Terasaki PI. ed.) UCLA Tissue Typing Lab., Los Angeles, CA, 1992; p. 1–11.Google Scholar
  20. 20.
    Ekberg H, Christensson A. Similar treatment success rate after renal transplantation in diabetic and non-diabetic patients due to improved short- and long-term diabetic patient survival. Transpl Int 1996; 9: 557–564.PubMedCrossRefGoogle Scholar
  21. 21.
    Aswad S, Shidman H, Bogaard T, Asai P, Khetan U, McEvoy K, Satterthwaite, Mendez RG, Mendez R. Renal transplantation in diabetic patients in the 1990s (Abst) J Am Soc Nephrol 1997; 7:1902.Google Scholar
  22. 22.
    Patterson AD, Doraan TL, Peacock I, et al. Cause of death in diabetic patients with impaired renal function. An audit of a hospital diabetic clinic population. Lancet 1987; 1: 313–316.CrossRefGoogle Scholar
  23. 23.
    Lewis EJ, Hunsicker LG, Bain RP, Rhode RD. The effect of angiotensin-converting -enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329:1456–1462.PubMedCrossRefGoogle Scholar
  24. 24.
    Maryniak RK, Mendoza N, Clyne D, Balakrishnan K, Weiss MA Recurrence of diabetic nodular glomerulosclerosis in a renal transplant. Transplantation 1985; 39: 35–38.PubMedCrossRefGoogle Scholar
  25. 25.
    Abouna G, Adnani MS; Kumar MS, Samhan SA. Fate of transplanted kidneys with diabetic nephropathy. Lancet 1986; 1: 622–624.PubMedCrossRefGoogle Scholar
  26. 26.
    Tuttle KR, Bruton L, Perusek MC, Lancaster JL, Kopp DT, DeFronzo R. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N Engl J Med 1991; 324:1626–1632.PubMedCrossRefGoogle Scholar
  27. 27.
    Gruessner RW, Sutherland DE, Troppmann C, Benedetti E, Hakim N, Dunn DL, Gruesnner AC. The surgical risk of pancreas transplantation in the cyclosporine era. An oveview. J Am Coll Surg 1997; 185: 128–144.PubMedCrossRefGoogle Scholar
  28. 28.
    Gruessner RW. Tacrolimus in pancreas transplantation: a multicenter analysis. Tacrolimus Pancreas Transplant Study Group. Clin Transpl 1997; 11:299–312.Google Scholar
  29. 29.
    Fioretto P, Steffes MW, Sutherland DER, Goetz FC, Mauer M. Successful pancreas transplantion alone reverses established lesions of diabetic nephropathy in man. J Am Soc Nephrol (Abst) 1997; 8: 111 A.Google Scholar
  30. 30.
    Brownlee M. Glycation and diabetic complications. Diabetes 1994; 43: 837–841.Google Scholar
  31. 31.
    Vlassara H. Protein glycation in the kidney. Role in diabetes and aging Kidney Int 1996; 49: 1795–1804.CrossRefGoogle Scholar
  32. 32.
    Kato H, Hayase F, Shin DB, Oimomi M, Baba S 3-Deoxyglucosone, an intermediate product of the Maillard reaction.,Prog Clin Biol Res 1989; 304:69–84.PubMedGoogle Scholar
  33. 33.
    Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW. Nε -Carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 1995; 34: 10872–10878PubMedCrossRefGoogle Scholar
  34. 34.
    Freilander MA, Witko-Sarsat V, Nguyen AT, Wu YC, Labrante M, Verger C, Jungers P, Descamps-Latscha B. The advanced glycation endproduct pentosidine and monocyte activation in uremia. Clin Nephrol 1996; 45: 379–382.Google Scholar
  35. 35.
    Sell DR, Monnier VM Structure elucidation of a senescence cross-link from human extracellur matrix. J Biol Chem 1989; 264: 21597–21602.PubMedGoogle Scholar
  36. 36.
    Niwa T, Kaatsuzaki T, Miayzaki S, et al. Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients. J Clin Invest 1997; 99.1272–1280.PubMedCrossRefGoogle Scholar
  37. 37.
    Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest 1997; 99: 3:457–468.PubMedCrossRefGoogle Scholar
  38. 38.
    Schmidt AM, Hori O, Chen JX, et al. Advanced glycation end-product interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. J Clin Invest 1995; 96:1395–1403.PubMedCrossRefGoogle Scholar
  39. 39.
    Renard C, Chappey O, Wautier MP, Nagashima M, Lundh E, Morser J, Zhao L, Schmidt AM, Scherrmann JM, Wautier JL. Recombinant advanced glycation end product receptor pharmacokinetics in normal and diabetic rats. Mol Pharmacol 1997; 52: 54–62.PubMedGoogle Scholar
  40. 40.
    Koschinsky T, He CJ, Mitsuhashi T, Cucala R, Liu C, Buenting C, Heitmaim K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an enviromental risk factor in diabetic nephropathy. Proc Natl Avcad Sci USA, 1997; 94: 6474–6479.CrossRefGoogle Scholar
  41. 41.
    Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R. Exogenous advanced glycosylatíon end products induce complex vascular dysfunction in normal animals: A model for diabetic and aging complications. Proc Natl Acad Sci USA 1992; 89:12043–12047.PubMedCrossRefGoogle Scholar
  42. 42.
    Yang CW, Vlassara H, Peten EP, He CJ, Striker GE, Striker JL. Advanced glycation end-products up-regulate gene expression found in diabetic glomerular disease. Proc Natl Acad Sci USA, 1994; 91: 9436–9440.PubMedCrossRefGoogle Scholar
  43. 43.
    Vlassara H. Serum advanced glycosylatíon end products: A new class of uremic toxins? Blood Purif l994; 12: 54–59.CrossRefGoogle Scholar
  44. 44.
    Knowx LK, Stewart AG, Hayward PG, Morrison WA. Nitric oxide synthase inhibitors improve skin flap survival in the rat. Microsurgery 1994; 15:708–711.CrossRefGoogle Scholar
  45. 45.
    Tilton RG, Chang K, Corbett JA, Misko TP, Currie MG, Cora NS, Kaplan HJ, Williamson JR. Endotoxin-induced uveitis in the rat is attenuated by inhibition of nitric oxide production. Invest Ophthalmol Vis Sci 1994; 35: 3278–3288.PubMedGoogle Scholar
  46. 46.
    Hogan M, Cerami A, Bucala R. Advanced glycosylatíon end-products block the antiproliferative effect of nitric oxide. Role in the vascular and renal complications of diabetes mellitus. J Clin Invest 1992; 90:1110–1105.PubMedCrossRefGoogle Scholar
  47. 47.
    Brownlee M Glycosylation of proteins and microangiopathy. Hosp Pract (Off ed) 27, 1992; (suppl 1): 46–50Google Scholar
  48. 48.
    Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Cucala R. Exogenous advanced glycosylatíon end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci USA, 1992; 89: 12043–12047.PubMedCrossRefGoogle Scholar
  49. 49.
    Makita Z, Radoff S, Rayfield EJ, Yang Z, Skolnik E, Delaney V, Friedman EA, Cerami A, Vlassara H. Advanced glycosylatíon end products in patients with diabetic nephropathy. New Engl J Med 1991; 325: 836–842.PubMedCrossRefGoogle Scholar
  50. 50.
    Ellis EN, Good BH. Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus. Metabolism 1991; 40:1016–1019.PubMedCrossRefGoogle Scholar
  51. 51.
    Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA, 1991; 88: 11555–11558.PubMedCrossRefGoogle Scholar
  52. 52.
    Yagihashi S, Kamijo M, Baba M, Yagihashi M, Nagai K. Effect of aminoguanidine on functional and structural abnormalities in peripheral nerve of STZ-induced diabetic rats. Diabetes 1992; 41:47–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Friedman EA, Distant DA, Fleishhacker JP, Boyd TA, Cartwright K. Aminoguanidine prolongs survival in azotemic induced diabetic rats. Amer J Kidney Dis 1997; 30:253–259.CrossRefGoogle Scholar
  54. 54.
    Brownlee M. Pharmacological modulation of the advanced glycosylatíon reaction. Prog Clin Biol Res 1989; 304:235–248.11.PubMedGoogle Scholar
  55. 55.
    Nicholls K, Mandel TE. Advanced glycosylatíon end-products in experimental murine diabetic nephropathy: effect of islet isografting and of aminoguanidine. Lab Invest, 1989; 60:486–491.PubMedGoogle Scholar
  56. 56.
    Lyons TJ, Dailie KE, Dyer DG, Dunn JA, Baynes JW. Decrease in skin collagen glycation with improved glycémie control in patients with insulin-dependent diabetes mellitus. J Clin Invest, 1991; 87:1910–1915.PubMedCrossRefGoogle Scholar
  57. 57.
    Corbett JA, Tilton RG, Chang K, Hasan KS, Ido Y, Wang JL, Sweetland MA, Lancaster Jr., Williamson JR, McDaniel ML. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes, 1992; 4:552–556.CrossRefGoogle Scholar
  58. 58.
    Tilton RG, Chang K, Hasan KS, Smith SR, Petrash JM, Misko TP, Moore WM, Currie MG, Corbett JA, McDaniel ML, et al. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes, 1991; 42; 221–232.CrossRefGoogle Scholar
  59. 59.
    Sensi M, Pricci F, Andreani D, DiMario U. Advanced non-enzymatic glycation (AGE) their relevance to aging and the pathogenesis of late diabetic complications. Diabetes Res 1991; 16:1–9.PubMedGoogle Scholar
  60. 60.
    Edelstein D, Brownlee M. Mechanistic studies of advanced glycosylation end-product inhibition by aminoguanidine. Diabetes, 1992; 41: 26–29.PubMedCrossRefGoogle Scholar
  61. 61.
    Eika B, Levin RM, Longhurst PA Collagen and bladder function in streptozotocin-diabetic rats: effects of insulin and aminoguanidine. J Urol 1992; 148:167–172.PubMedGoogle Scholar
  62. 62.
    Braun WE, Phillips D, Vidt DG, et al. The course of coronary artery disease in diabetics with and without renal allografts. Transplant Proc, 1983; 15:1114–1119.Google Scholar
  63. 63.
    Khauli RB, Steinmuller DR, Novick AC, et al. A critical look at survival of diabetics with end-stage renal disease: Transplantation versus dialysis therapy. Transplantation, 1986; 41: 598–602.PubMedCrossRefGoogle Scholar
  64. 64.
    Philipson JD, Carpenter BJ, Itzkoff J, Hakala TR, Rosenthal JT, Taylor RJ, Puschett JB. Evaluation of cardiovascular risk for renal transplantation in diabetic patients. Am J Med, 1986; 81:630–634.PubMedCrossRefGoogle Scholar
  65. 65.
    Corry RJ, Nghiem DD, Shanbacher B, et al. Critical analysis of mortality and graft loss following simultaneous renal — pancreatic duodenal transplantation. Transplant Proc, 1987; 19: 2305–2306.PubMedGoogle Scholar
  66. 66.
    Gill JB, Ruddy TD, Newell JB, et al. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med, 1987; 317: 1485–1489.CrossRefGoogle Scholar
  67. 67.
    Bates JR, Sawada SG, Segar DS, Spaedy AJ, Petrovic O, Fineberg NS, Feigenbaum H, Ryan T. Evaluation using dobutamine stress echocardiography in patients with insulin-dependent diabetes mellitus before kidney and/or pancreas transplantation. Am J Cardiol 1996; 77:175–179.PubMedCrossRefGoogle Scholar
  68. 68.
    Hennesy TG, Codd MB, Kane G, McCarthy C, McCann HA, Sugrue DD. Evaluation of patients with diabetes mellitus for coronary artery disease using dobutamine stress echocardiography. Coron Artery Dis 1997; 8:171–174.CrossRefGoogle Scholar
  69. 69.
    Fanning WJ, Henry ML, Sommer BG, et al. Extremity and renal ischemia following renal transplantation. Vascular Surg. 1986; 23: 231–234.CrossRefGoogle Scholar
  70. 70.
    Abendroth D, Landgraft R, Illner WD, et al. 1990. Beneficial effects of pancreatic transplantation in insulin-dependent diabetes mellitus patients. Transplant Proc, 1990; 22: 696–697.Google Scholar
  71. 71.
    Gonzales-Carrillo M, Moloney A, Bewick M, et al. Renal transplantation in diabetic nephropathy. Br Med J, 1982; 285: 1713–1716.CrossRefGoogle Scholar
  72. 72.
    Yuge J and Cecka JM. Sex and age effects in renal transplantation. Clinical transplants 1991, (Terasaki PI ed) UCLA Tissue and Typing Lab, 1992; p. 261.Google Scholar
  73. 73.
    Najarían JS, Sutherland DER, Simmons RL, et al. Ten year experience with renal transplantation in juvenile onset diabetics. Ann Surgery, 1979; 190:487–500.CrossRefGoogle Scholar
  74. 74.
    Milde FK, Hart LK, Zehr PS. Pancreatic transplantation. Impact on the quality of life of diabetic renal transplant recipients. Diabetes Care, 1995; 18:93–95.PubMedCrossRefGoogle Scholar
  75. 75.
    Østerby R, Nyberg G, Hedman L, Karlberg I, Persson H, Svalander C. Kidney transplantation in type 1 (insulin-dependent) diabetic patients. Diabetologia, 1991; 9:668–674.CrossRefGoogle Scholar
  76. 76.
    Bohman SO, Wilczek H, Jaremko G, et al. Recurrence of diabetic nephropathy in human renal allografts: Preliminary report of a Biopsy Study. Transplant Proc, 1984; 16:649–653.PubMedGoogle Scholar
  77. 77.
    Mauer SM, Goetz FC, McHugh LE, et al. Longrerm study of Normal Kidneys transplanted into patients with type 1 diabtes. Diabetes, 1989; 38:516–523.PubMedCrossRefGoogle Scholar
  78. 78.
    Najarían JS, Kaufman DB, Fryd DS, McHugh L, Mauer SM, Ramsey RC, Kennedy WR, Navarro X, Goetz FC, Sutherland DE. Long-term survival following kidney transplantation in 100 type 1 diabetic patients. Transplantation, 1989; 1:106–113.CrossRefGoogle Scholar
  79. 79.
    Remuzzi G; Ruggenenti P, Mauer SM. Pancreas and kidney/pancreas transplants: experimental medicine or real improvement? Lancet 1994; 343:27–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Eli A. Friedman
    • 1
  1. 1.Department of Medicine, Health Science Center at BrooklynState University of New YorkBrooklynN.Y.USA

Personalised recommendations