Genetics and Diabetic Nephropathy

  • Michel Marre
  • Béatrice Bouhanick


Both genetic determinants and environmental conditions can affect enzyme activity. As all IDDM complications are secondary to long lasting hyperglycemia, the search for a genetic basis to diabetic nephropathy represents a typical example of search for gene-environment interaction. Furthermore, gene-gene interactions must be expected, as determinants for IDDM complications are multifactorial. Lastly, the level of evidence for one given gene polymorphism is currently low to account for diabetic nephropathy. Thus, practical implications for this type of investigation in patient care are currently premature.


Diabetic Nephropathy NIDDM Patient IDDM Patient Deletion Polymorphism Angiotensin Converting Enzyme Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Siperstein M.D., Unger R.H., madison L.L.Studies of muscle capillary basement membranes in normal subjects, diabetic and prediabetic patients. J. Clin. Invest., 1968,47:1973–1999PubMedCrossRefGoogle Scholar
  2. 2.
    Mauer S., Steffes MW., Sutherland D.E.R., Najarian J.S., Michael A.F., Brownd M. Studies of the rate of regression of the glomerular lesions in diabetic rats treated with pancreatic islet transplantation. Diabetes, 1975,24:250–255Google Scholar
  3. 3.
    Williamson J.R., Chang K., Frangos M., Hasan K.S., Ido Y., Kawamura F., Nyengaard J.R., Van Den Enden M., Kilo C, Tilton R.G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes, 1993,42: 801–813PubMedCrossRefGoogle Scholar
  4. 4.
    Pirart J. Diabète et complications dégénératives. Présentation d’une étude prospective portant sur 4400 cas observés entre 1947 et 1973. Diabete Metab., 1977,3:97–107,3:173–182,3: 245–256PubMedGoogle Scholar
  5. 5.
    The Diabetes Control and Complications Trial Research Group.The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993,329: 977–986CrossRefGoogle Scholar
  6. 6.
    Krolewski A. J., Warram J.H., Rand L.I., Kahn CR. Epidemiologic approach to the etiology of type I diabetes mellitus and its Complications. N. Engl. J. Med, 1987,317:1390–1398PubMedCrossRefGoogle Scholar
  7. 7.
    Andersen A.R., Christiansen J.S., Andersen J.K., Kreiner S., Deckert T. Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological Study. Diabetologia, 1983,2:496–501.Google Scholar
  8. 8.
    Borch-Johnsen K., Andersen P. K., Deckert T. The effect of proteinuria on relative mortality in type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 1985,28: 590–596PubMedCrossRefGoogle Scholar
  9. 9.
    Seaquist E.R., Goetz F.C., Rich S., Barbosa J. Familial clustering ofdiabetic kidney disease : evidence for genetic susceptibility to diabetic nephropathy. N. Engl. J. Med, 1989, 320: 1161–1165PubMedCrossRefGoogle Scholar
  10. 10.
    Earle K., Walker J., Hill C, Viberti G.C. , Familial clustering of cardiovascular disease in patients with insulin-dependent diabetes and nephropathy. N. Engl. J. Med, 1992,326: 673–677PubMedCrossRefGoogle Scholar
  11. 11.
    Quinn M., Angelico M.C., Warram J.H., Krolewski A.S. Familial factors determine the development of diabetic nephropathy in patients with IDDM Diabetologia, 1996,39: 940–945PubMedCrossRefGoogle Scholar
  12. 12.
    Viberti G.C., Keen H., Wiseman M.J. Raised arterial pressure in parents of proteinuric insulin-dependent diabetics. B.M.J, 1987,295: 515–517CrossRefGoogle Scholar
  13. 13.
    Borch-Johnsen K., Norgaard K., Hommel E., Mathiesen E.R., Jensen J.S., Deckert T., Parving H.H. Is diabetic nephropathy an inherited complication? Kidney Int, 1992,41:719–722PubMedCrossRefGoogle Scholar
  14. 14.
    Pettit D.J., Saad M.F., Bennett P.H., Nelson R.G., Knowler W.C. Familial predisposition to renal disease in two generations of Pima Indians with 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 1990,33: 438–443CrossRefGoogle Scholar
  15. 15.
    Wu D. A., Bu X., Harden C.H., Shen D.D.C., Jeng C.Y., Sheu W.H.H., Fuh M.MT., Katsuya T., Dzau V.J., Reaven G.M., Lusis A.J., Rotter J.I, Chen D.I. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the Lipoprotein lipase gene locus on chromosome 8p22.J. Clin. Invest, 1996,97: 2111–2118PubMedCrossRefGoogle Scholar
  16. 16.
    Jeunemaitre X., Soubrier F., Kotelevtsev Y., Lifton R., Williams C, Charm A., Hunt S., Hopkins P., Williams R., Lalouel J.M, Corvol P. Molecular basis of human hypertension: role of angiotensinogen. Cell, 1992,71:169–180PubMedCrossRefGoogle Scholar
  17. 17.
    Cambien F., Aflienc-Gelas F., Herberth B., Andre J.L., Rakotovao R., Gonzales M.F., Aüegrini J., Bloch C. Familial ressemblance of plasma angiotensin converting enzyme level: the Nancy study. Am. J. Hum. Genet, 1988,43: 774–780PubMedGoogle Scholar
  18. 18.
    Cambien F., Poirier O., Lecerf L., Evans A., Cambou J.P., Arveiler D., Luc G., Bard J.M., Bara L., Ricard S., Tiret L., Amouyel Ph., Alhenc-Gelas F., Soubrier F. Deletion polymorphism in the gene for angiotensin converting enzyme is a potent risk factor for myocardial infarction. Nature, 1992,359: 641–644PubMedCrossRefGoogle Scholar
  19. 19.
    Cambien F., Costerousse O., Tiret L., Poirier O., Lecerf L., Gonzales MF., Evans A., Arveiler D., Cambou J.P., Luc G., Rakotovao R., Ducimetiere P., Soubrier F., Alhenc-Gelas F. Plasma level and gene polymorphism of angiotensin concerting enzyme in relation to myocardial infarction. Circulation, 1994,90: 669–676PubMedCrossRefGoogle Scholar
  20. 20.
    Parving H.H., Viberti G.C., Keen H., Christiansen J.S., Lassen N. A. Hemodynamic factors in the genesis of diabetic microangiopathy. Metabolism, 1983,32: 943–949PubMedCrossRefGoogle Scholar
  21. 21.
    Tooke J.E. Microvascular function in human diabetes. A physiological perspective. Diabetes, 1995,44: 721–726PubMedCrossRefGoogle Scholar
  22. 22.
    Zatz R., Dunn B.R., Meyer T.W., Anderson S., Rennke H.G., Brenner B.M. Prevention of diabetic glomerulopathy by pharmacological of glomerular capillary hypertension. J. Clin. Invest, 1986, 77: 1925 – 1930PubMedCrossRefGoogle Scholar
  23. 23.
    Deckert T., Feldt-Rasmussen B., Borch-Johnsen K., Jensen T., Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage: the Steno hypothesis. Diabetologia, 1989, 32: 219–226PubMedCrossRefGoogle Scholar
  24. 24.
    Ko B.C.B., Lam K.S.L., Wat N.M.S., Chung S.S.M An (A-C)n dinucleotide repeat polymorphic marker at the 5* end of the aldose reductase gene is associated with early-onset diabetic retinopathy in NIDDM patients. Diabetes, 1995,44:727–732PubMedCrossRefGoogle Scholar
  25. 25.
    Heesom A.E., Hibberd M.L., Millward A., Demaine A.G. Polymorphism in the 5’-end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type I diabetes. Diabetes, 1997,46 : 287–291PubMedCrossRefGoogle Scholar
  26. 26.
    Brenner B. M Hemodynamicaly mediated glomerular injury and the progressive nature of kidney disease. Kidney Intern, 1983,23:617–655.,CrossRefGoogle Scholar
  27. 27.
    Taguma Y., Kitamoto Y., Futaki G., Ueda H., Monma H., Ishizaki M, Takahashi H., Sekino H., Sasaky Y. Effect of Captopril on heavy proteinuria in azotemic diabetics. N. Engl. J. Med, 1985, 313:1617–1620PubMedCrossRefGoogle Scholar
  28. 28.
    Marre M., Leblanc H., Suarez L., Guyenne T.T., Menard J., Passa P. Converting enzyme inhibition and kidney function in normotensive diabetic patients with persistent microalbuminuria. B.MJ, 1987, 294:1448–1452Google Scholar
  29. 29.
    Hommel E., Mathiesen E., Olsen U.B., Parving H.H. Effects of indomethacin on kidney function in type 1 (insulin-dependent) diabetic patients with nephropathy. Diabetologia, 1987,30:78–81PubMedGoogle Scholar
  30. 30.
    Myrup B., Hansen P.M., Jensen J., Kofoed-Enevoldsen A., Feldt-Rasmussen B., Gram J., Kluft C, Jespersen J., Deckert T. Effect of low-dose heparin on urinary albumin excretion in insulin-dependent diabetes mellitus. Lancet, 1995,345: 421–422PubMedCrossRefGoogle Scholar
  31. 31.
    Torremocha F, Marechaud R, Marre M, Passa Ph., Rodier M, Alhenc-Gelas F., Jeunemaitre X. for the GENEDI AB group Lack of relation between renal kallidrein gene polymorphism and diabetic nephropathy. Diabetologia, 1997,40, A520 (abstract)Google Scholar
  32. 32.
    Gaucher C, Lacquemant C., Delorme C, Ruiz J., Mazurier C, Rodier M, Bauduceau B., Gallois Y., Passa Ph., Marre M., Froguel P., et le groupe GENEDIAB Polymorphisme THR/ALA789 du facteur Von Willebrand et maladie coronarienne chez les diabétiques insulino-dépendants. Diabète et Métabolisme, 1997, Vol. 23, p. XXIIGoogle Scholar
  33. 33.
    Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. An insertion deletion polymorphism in angiotensin I convertion enzyme gene accounting for half of the variance of serum enzyme levels. J. Clin. Invest, 1990, 86:1343–1346PubMedCrossRefGoogle Scholar
  34. 34.
    Hostetter T.H., Troy J.L., Brenner B.M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int, 1981,19:410–415PubMedCrossRefGoogle Scholar
  35. 35.
    Hall J.E., Guyton A.C., Jackson T.E., Coleman T.G., Lohmeier T.E., Tripoddo N.C. Control of glomerular filtration rate by renin-angiotensin system. Am. J. Physiol, 1977,233: F366-F372Google Scholar
  36. 36.
    Marre M., Chatellier G., Leblanc H., Guyenne Tt, Menard J., Passa P. Prevention of diabetic nephropathy with enalapril in normotensive diabetics with microalbuminuria. B.M.J., 1988,297: 1092–1095CrossRefGoogle Scholar
  37. 37.
    Lewis E.J., Hunsiker L.G., Bain R.P., Rohde R.D., for the Collaborative Study Group. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N. Engl. J. Med., 1993, 329:1456–1462PubMedCrossRefGoogle Scholar
  38. 38.
    Vane J.R. Sites of conversion of angiotensin I. I. Hypertension. Genest J., Koine E., eds Berlin, Springer Verlag, 1972, p 523–532Google Scholar
  39. 39.
    Bonnardeaux A., Davies E., Jeunemaitre X., Fery I., Charm A., Clauser E., Tiret L., Cambien F., Corvol P., Soubrier F. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension, 1994,24:63–69PubMedCrossRefGoogle Scholar
  40. 40.
    Marre M-, Bemadet P., Gallois Y., Savagner F., Guyene T.T., Hallab M., Cambien F., Passa Ph., Alhenc-Gelas F. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes, 1994,43:384–388PubMedCrossRefGoogle Scholar
  41. 41.
    Tamow L., Cambien F., Rossing P., Nielsen F.S., Hansen B. V., Lecerf L., Poirier O., Danilov S., Parving H.H. Lack of relationship between an insertion / deletion polymorphism in the I-converting enzyme gene and diabetic nephropathy and proliferative retinopathy in IDDM patients. Diabetes, 1995,44:489–494CrossRefGoogle Scholar
  42. 42.
    Schmidt S., Schone N., Ritz E., and the Diabetic Nephropathy Study Group: Association of ACE gene polymorphism and diabetic nephropathy ? Kidney Int., 1995,47:1176–1181PubMedCrossRefGoogle Scholar
  43. 43.
    Powrie J.K., Watts G.F., Ingiam J.N., Taub N.A., Talmud P.J., Shaw K.M. Role of glycaemic control in development of microalbuminuria in patients with insulin-dependent diabetes. B.MX, 1994,309: 1608–1612CrossRefGoogle Scholar
  44. 44.
    Chowdhury T.A., Dronsfield M.J., Kumar S., Gough S.L.C., Gibson S.P., Khatoon A., Macdonald F., Rowe B.R., Dünger D.B., Dean J.D., Davies S. J., Webber J., Smith P.R., Macrin P., Marshall S.M., Adu D., Morris P.J.M., Todd J.A., Bamett A.H., Boulton A.J.M., Bain S.C. Examination of two genetic polymorphisms within the renin-angiotensin system : no evidence for an association with nephropathy in IDDM. Diabetologia, 1996,39 :1108–1114PubMedCrossRefGoogle Scholar
  45. 45.
    Marre M., Jeunemaitre X., Gallois Y., Rodier M, Chatellier G., Sert C, Dusselier L., Kahal Z., Chaillous L., Halimi S., Muller A, Sackmann H., Bauduceau B., Bled F., Passa Ph., Alhenc-Gelas F. Contribution of Genetic polymorphism in the Renin-Angiotensin System to the development of renal complications in insulin-dependent diabetes. J. Clin. Invest., 1997, 99, 1585–1595PubMedCrossRefGoogle Scholar
  46. 46.
    Staessen JA, Wang JG, Ginocchio G, Petrov V, Saavedra AP, Soubrier F, Vlietinck R, Fagard R. The delation/insertion polymorphism of the angiotension converting enzyme gene and cardiovascular-renal risk. J Hypertension, 1997,15 :1575–1592.CrossRefGoogle Scholar
  47. 47.
    Fujisawa T, Ikegemi H, Kawaguchi Y, Hamada Y, Ueda H, Shintani M, Fakuda M, Ogihara T. Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic nephropathy and retinopathy. Diabetologia, 1998,41:47–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Miller J.A., Scholey J.W., Thai K., Pei Y.P.C. Angiotensin converting enzyme gene polymorphism and renal hemodynamic function in early diabetes. Kidney International, 1997, 51:119–124PubMedCrossRefGoogle Scholar
  49. 49.
    Mau-Pedersen M., Schmitz A., Pedesen E.B., Danielsen H., Christiansen J.S. Acute and long-term renal effects of angiotensin Converting enzyme inhibition in normotensive, normoalbuminuric insulin-dependent diabetic patients. Diabetic Med, 1988,5: 562–569CrossRefGoogle Scholar
  50. 50.
    Marre M., Gallois Y., Bled F., Pean F., Bouhanick B., Le Jeune J.J., Alhenc-Gelas F. Renal response to hyperglycemia and angiotensin I converting enzyme deletion (D) allele in IDDM (abstract). Diabetologia, 1997,40 (suppl 1) : A521Google Scholar
  51. 51.
    Bamas U., Schmidt A., Illievich A, Kiener H.P., Rabensteiner D., Kaider A, Prager R., Abrahamian H., Irsigler K., Mayer G. Evaluation of risk factors for the development of nephropathy in patients with IDDM : insertion/deletion angiotensin converting enzyme gene polymorphism, hypertension and metabolic control. Diabetologia, 1997,40 :327–331CrossRefGoogle Scholar
  52. 52.
    Parving H.H., Jacobsen P., Tamow L., Rossing P., Lecerf L., Poirier O., Cambien F. Effect of deletion polymorphism of angiotensin enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme, observational follow-up study. B.M.J., 1996,313:591–594CrossRefGoogle Scholar
  53. 53.
    Ruiz J., Blanche H., Cohen N., Velho G., Cambien F., Cohen D., Passa Ph., Froguel Ph. Insertion / Deletion polymorphism of the angiotensin converting enzyme gene is strongly associated with coronary heart disease in non-insulin-dependent diabetes mellitus Proc Natl. Acad. Sci. USA, 1994,91:3662–3665CrossRefGoogle Scholar
  54. 54.
    Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N. EngJ. J. Med, 1984,310:356–360CrossRefGoogle Scholar
  55. 55.
    Jarrett R.J., Viberti G.C., Argyropoulos A., Hill R.D., Mahmud U., Murrels T.J. Microalbuminuria predicts mortality in non insulin-dependent diabetics. Diabetic Med., 1984, 1: 17–19PubMedCrossRefGoogle Scholar
  56. 56.
    Mattock M.B., Morrish N.J., Viberti G.C., Keen H., Fitzerald A.P., Jackson G. Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes 1992,41: 736–741PubMedCrossRefGoogle Scholar
  57. 57.
    Dubley C.R.K., Keavney B., Stratton I.M., Turner R.C., Ratcliffe P.J. U.K. prospective diabetes study XV: relationship of renin-angiotensin system gene polymorphisms with microalbuminuria in IDDM-Kidneylnt, 1995,48:1907–1911Google Scholar
  58. 58.
    Mizuiri S., Hemmi H., Inoue A., Yoshikawa H., Tanegashima M., Fushimi T., Ishigami M., Amagasaki Y., Ohara T., Shimatake H., Hasegawa A. Angiotensin-converting-enzyme polymorphism and development of diabetic nephropathy in non-insulin-dependent diabetes mellitus. Nephron., 1995,70: 455–459PubMedCrossRefGoogle Scholar
  59. 59.
    Doi Y., Yoshizumi H., Lino K., Yamamoto M., Ichikawa K., Iwase M., Fujishima M. Association between a polymorphism in the angiotensin-converting-enzyme gene and microavascular complications in Japanese patients with NIDDM. Diabetologia, 1996,39:97–102PubMedGoogle Scholar
  60. 60.
    Ohno T., Kawazu S., Tomono S. Association analyse of the polymorphisms of angiotensin-converting enzyme and angiotensinogen genes with diabetic nephropathy in Japanese non-insulin-dependent diabetics. Metabolism, 1996,45 : 218–222PubMedCrossRefGoogle Scholar
  61. 61.
    Fujisawa T., Ikegami H., Shen G.Q., Yamato E., Takekawa K., Nakagawa Y., Hamada Y., Ueda H., Rakugi H., Higaki I, Ohishi M., Fujii K., Fukuda M, Ogihara T. Angiotensin I converting enzyme gene polymorphism is associated with myocardial infarction, but not with retinopathy or nephropathy, in NIDDM. Diabetes Care, 1995,18: JulyGoogle Scholar
  62. 62.
    Schmidt S., Schone N., Ritz E., and the Diabetic Nephropathy Study Group: Association of ACE gene polymorphism and diabetic nephropathy ? Kidney Int., 1995,47:1176–1181PubMedCrossRefGoogle Scholar
  63. 63.
    Gambara V., Mecca G., Remuzzi G., Bertani T. Heterogeneous nature of renal lesions in type II diabetes. J. Am. Soc. Nephrol., 1993,3:1458–1466PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Michel Marre
    • 1
  • Béatrice Bouhanick
    • 1
  1. 1.Centre Hospitalier UniversitaireAngersFrance

Personalised recommendations