Hypertension, Cardiovascular Disease, Diabetes Mellitus, and Diabetic Nephropathy: Role of Insulin Resistance

  • Anna Solini
  • Ralph A. DeFronzo


Essential hypertension (blood pressure >160/95 mmHg) is a common disorder that affects approximately 15–20% of Caucasian populations [1]. If a blood pressure greater than 140/90 mmHg is used as the cut off value, then 40–45% of the general population would be considered to have essential hypertension [1]. In nonwhite populations the incidence of essential hypertension is even higher. A number of factors including obesity, physical inactivity, age, dyslipidemia, glucose intolerance, smoking, and positive family history all have been linked to an increased incidence of essential hypertension. It is noteworthy that each one of these factors has been shown to be associated with the presence of insulin resistance [2–8]. Conversely, weight loss [9] and enhanced physical activity [10] have been shown to improve insulin sensitivity and to lower blood pressure. Over the last decade there has accumulated a large body of evidence which implicates insulin resistance and its compensatory hyperinsulinemia as the central feature of a tightly interwoven metabolic-cardiovascularweb (table 7-1), and several excellent review of the Insulin Resistance Syndrome have been published recently [11–14].


Insulin Resistance Diabetic Nephropathy Essential Hypertension Atrial Natriuretic Peptide United Kingdom Prospective Diabetes Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kannel WB, Schwartz MJ, Mc Namara PM. Blood pressure and risk of coronary heart disease: the Framingham study. Dis Chest 1969; 56: 43–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Golay A, Felber JP, Jequier E, DeFronzo RA, Ferrannini E. Metabolic basis of obesity and non-insulin dependent diabetes mellitus. Diabetes Metab Rev 1988; 4: 727–747.PubMedCrossRefGoogle Scholar
  3. 3.
    Schneider SH, Vitug A, Ruderman N. Atherosclerosis and physical activity. Diabetes Metab Rev 1986; 1: 513–553.PubMedCrossRefGoogle Scholar
  4. 4.
    DeFronzo RA. Glucose intolerance and aging. Diabetes Care 1981; 4: 483–501.Google Scholar
  5. 5.
    Garg A, Helderman JH, Koffler M, Aguro R, Rosenstock J, Raskin P. Relationship between lipoprotein levels and in vivo insulin action in normal young white men. Metabolism 1988; 37: 982–987.PubMedCrossRefGoogle Scholar
  6. 6.
    DeFronzo RA. Lilly Lecture. The triumvirate: beta cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988; 37: 667–687.Google Scholar
  7. 7.
    Attvall S, Fowelin J, Lager I, Von Schenck H, Smith U. Smoking induces insulin resistance. A potential link with the insulin resistance syndrome. J Intern Med 1993; 233: 327–332.Google Scholar
  8. 8.
    Williams RR, Hunt SC, Huida H, Smith JB, Ash KO. Sodium-lithium countertransport in erythrocytes of hypertension prone families in Utah. Am J Epidemiol 1983; 11: 338–344.Google Scholar
  9. 9.
    Henry RR, Scheaffer L, Olefsky JM. Glycemic effects of intensive caloric restriction and isocaloric refeeding in NIDDM. J Clin Endocrinol Metab 1985; 61: 917–925.PubMedCrossRefGoogle Scholar
  10. 10.
    Koivisto V, DeFronzo RA. Physical training and insulin sensitivity. Diabetes Metab Rev 1986; 1: 445–481.PubMedCrossRefGoogle Scholar
  11. 11.
    DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173–194.PubMedCrossRefGoogle Scholar
  12. 12.
    DeFronzo RA. Insulin resistance, hyperinsulinemia and coronary artery disease: a complex metabolic web. Coronary Art Dis 1992; 3: 11–25.CrossRefGoogle Scholar
  13. 13.
    Reaven GM. Banting lecture. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–1607.Google Scholar
  14. 14.
    Ferrannini E, Haffner SM, Mitchell BD, Stern HP. Hyperinsulinaemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia 1991; 34: 416–422.PubMedCrossRefGoogle Scholar
  15. 15.
    Mogensen CE, Hansen KW, Mau Pedersen M, Christensen CK. Renal factors influencing blood pressure threshold and choice of treatment for hypertension in IDDM. Diabetes Care 1991; 14: Suppl. 4: 13–26.PubMedGoogle Scholar
  16. 16.
    DeFronzo RA. Incipient diabetic nephropathy: etiologic and therapeutic considerations. A monograph. Pawling, NY, Caduceus Medical Publishers 1993; pp 1–30.Google Scholar
  17. 17.
    Mogensen CE, Christensen CK. Blood pressure changes and renal function changes in incipient and overt diabetic nephropathy. Hypertension 1985; 7: Suppl. II: II–64–II–73.Google Scholar
  18. 18.
    A Multicenter Study. United Kingdom Prospective Diabetes Study. III. Prevalence of hypertension and hypotensive therapy in patients with newly diagnosed diabetes. Hypertension 1985; 7: Suppl. II: II–8–II–13.Google Scholar
  19. 19.
    Trevisan R, Nosadini R, Fioretto P, Semplicini A, Donadon V, Doria A, Nicolosi G, Zanuttini D, Cipollina MR, Lusiani L, Avogaro A, Crepaldi G, Viberti GC. Clustering of risk factors in hypertensive insulin-dependent diabetics with high sodium-lithium countertransport. Kidney Int 1992; 41: 855–861.PubMedCrossRefGoogle Scholar
  20. 20.
    Yudkin JS, Forrest RD, Jackson CA. Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Lancet 1988; i: 530–533.CrossRefGoogle Scholar
  21. 21.
    Matlock MB, Morrish NJ, Viberti GC, Keen H, Fitzgerald AP, Jackson G. Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes 1992; 41: 736–741.CrossRefGoogle Scholar
  22. 22.
    Nosadini R, Solini A, Velussi M, Muollo B, Frigato F, Sambataro M, Cipollina MR, De Riva F, Brocco E, Crepaldi G. Impaired insulin-induced glucose uptake by extrahepatic tissue is hallmark of NIDDM patients who have or will develop hypertension and microalbuminuria. Diabetes 1994; 43: 491–499.PubMedCrossRefGoogle Scholar
  23. 23.
    Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen JT, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 1989; 32: 219–226.Google Scholar
  24. 24.
    Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 1992; 41: 715–722.PubMedCrossRefGoogle Scholar
  25. 25.
    DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15: 318–368.CrossRefGoogle Scholar
  26. 26.
    Manicardi V, Camellini L, Bellodi G, Coscelli C, Ferrannini E. Evidence for an association of high blood pressure and hyperinsulinaemia in obese man. J Clin Endocrinol Metab 1986; 62: 1302–1304.PubMedCrossRefGoogle Scholar
  27. 27.
    Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L, Pedrinelli R, Brandi L, Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med 1987; 317: 350–357.PubMedCrossRefGoogle Scholar
  28. 28.
    Pollare T, Lithell H, Berne C. Insulin resistance is a characteristric feature of primary hypertension independent of obesity. Metabolism 1990; 39: 167–174.PubMedCrossRefGoogle Scholar
  29. 29.
    Laakso M, Sarlund H, Mykkanen L. Essential hypertension and insulin resistance in non insulin dependent diabetes. Eur J Clin Invest 1989; 19: 518–526.PubMedCrossRefGoogle Scholar
  30. 30.
    Natali A, Santoro D, Palombo C, Cerri M, Ghione S, Ferrannini E. Impaired insulin action on skeletal muscle metabolism in essential hypertension. Hypertension 1991; 17: 170–178.PubMedCrossRefGoogle Scholar
  31. 31.
    Capaldo B, Lembo G, Napoli R, Rendina V, Albano G, Sacca’ L, Trimarco B. Skeletal muscle is a primary site of insulin resistance in essential hypertension. Metabolism 1991; 17: 170–178.Google Scholar
  32. 32.
    Brands MW, Hilderbrandt DA, Mizelle HL, Hall JE. Sustained hyperinsulinemia increases arterial pressure in conscious rats. Am J Physiol 1991; 260: R764–R768.PubMedGoogle Scholar
  33. 33.
    Hall JE, Coleman TG, Mizell HL, Smith Jr MJ. Chronic hyperinsulinemia and blood presure regulation. Am J Physiol 1990; 258: F722–F731.PubMedGoogle Scholar
  34. 34.
    Randeree HA, Omar MA, Motala AA, Seedat MA. Effect of insulin therapy on blood pressure in NIDDM patients with secondary failure. Diabetes Care 1992; 15: 1258–1263.PubMedCrossRefGoogle Scholar
  35. 35.
    Tedde R, Sechi LA, Marigliano A, Pala A, Scano L. Antihypertensive effect of insulin reduction in diabetic-hypertensive patients. Am J Hypertens 1989; 2: 163–170.PubMedGoogle Scholar
  36. 36.
    Landin K, Tengborn L, Smith U. Treating insulin resistance in hypertension with metformin reduces both blood pressure and metabolic risk factors. J Intern Med 1991; 229: 181–187.PubMedCrossRefGoogle Scholar
  37. 37.
    Muller DC, Elahi D, Pratley RE, Tobin JD, Andres R. An Epidemiological Test of the Hyperinsulinemia-Hypertension Hypothesis. J Clin Endocrinol Metab 1993; 76: 544–548.PubMedCrossRefGoogle Scholar
  38. 38.
    Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; i: 7825–7829.Google Scholar
  39. 39.
    DeFronzo RA, Cooke CR, Andres R, Faloona GR, Davis PJ. The effects of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J Clin Invest 1975; 55: 845–855.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Trevisan R, Fioretto P, Semplicini A, Opocher G, Mantero F, Rocco S, Remuzzi G, Morocutti A, Zanette G, Donadon V, Perico N, Giorato C, Nosadini R. Role of insulin and atrial natriuretic peptide in sodium retention in insulin-treated IDDM patients during isotonic volume expansion. Diabetes 1990; 39: 289–298.PubMedCrossRefGoogle Scholar
  41. 41.
    DeFronzo RA, Goldberg M, Agus ZS. The effects of glucose and insulin on renal electrolyte transport. J Clin Invest 1976; 58: 83–90.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Baum M. Insulin stimulates volume absorption in the proximal convoluted tubule. J Clin Invest 1987; 79: 1104–1109.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Rowe JW, Young JB, Minaker KL, Stevens Al, Pallotta J, Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 1981; 30: 219–225.PubMedCrossRefGoogle Scholar
  44. 44.
    Fioretto P, Muollo B, Faronato PP, Opocher G, Trevisan R, Tiengo A, Mantero F, Remuzzi G, Crepaldi G, Nosadini R. Relationship among atrial natriuretic peptide and insulin in insulin-dependent diabetes. Kidney Int 1992; 41: 813–821.PubMedCrossRefGoogle Scholar
  45. 45.
    Weidmann P, Beretta-Piccoli C, Trost BN. Pressor factors and responsiveness in hypertension accompanying diabetes mellitus. Hypertension 1985; 7: Suppl. II: 33–42.Google Scholar
  46. 46.
    Weidmann P, Ferrari P. Central role of sodium in hypertension in diabetic subjects. Diabetes Care 1991; 14: 220–232.PubMedCrossRefGoogle Scholar
  47. 47.
    Daly PA, Landsberg L. Hypertension in obesity and NIDDM: role of insulin and sympathetic nervous system. Diabetes Care 1991; 14: 240–248.PubMedCrossRefGoogle Scholar
  48. 48.
    Anderson EA, Hoffmann RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991; 87: 2246–2252.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Julius S. Autonomic nervous dysfunction in essential hypertension. Diabetes Care 1991; 14: 249–259.PubMedCrossRefGoogle Scholar
  50. 50.
    Diebert DC, DeFronzo RA. Epinephrine-induced insulin resistance in man: a beta receptor mediated phenomenon. J Clin Invest 1980; 65: 717–721.CrossRefGoogle Scholar
  51. 51.
    Ortola FV, Ballerman BJ, Anderson S, Mendez RE, Brenner BM. Elevated plasma atrial natriuretic peptide levels in diabetic rats. J Clin Invest 1987; 80: 670–674.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Nosadini R, Fioretto P, Trevisan R, Crepaldi G. Insulin-dependent diabetes mellitus and hypertension. Diabetes Care 1991; 14: 210–219.PubMedCrossRefGoogle Scholar
  53. 53.
    Moore RD, Gupta RK. Effect of insulin on intracellular pH as observed by phosphorus-31 NMR spectroscopy. Int J Quantum Chem Symp 1986; 7: 83–92.Google Scholar
  54. 54.
    Moore RD. Stimulation of Na/H exchange by insulin. Biophys J 1981; 33: 203–210.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Putnam RW. Effect of insulin on intracellular pH in frog skeletal muscle fibers. Am J Physiol 1985; 248: C330–C336.PubMedGoogle Scholar
  56. 56.
    Trevisan R, Cipollina MR, Duner E, Trevisan M, Nosadini R. Abnormal sodium-hydrogen antiport activity in cultured fibroblasts from non insulin dependent diabetic patients with hypertension and microalbuminuria. Diabetologia 1996; in press.Google Scholar
  57. 57.
    Lever AF. Slow pressor mechanisms in hypertension: a role for hypertrophy of resistance vessels. J Hypertens 1986; 4: 515–524.PubMedCrossRefGoogle Scholar
  58. 58.
    Boon NA, Harper C, Aranson JK, Grahame-Smith DG. Cation transport functions in vitro in patients with untreated essential hypertension: a comparison of erythrocytes and leucocytes. Clin Sci 1985; 68: 511–515.PubMedGoogle Scholar
  59. 59.
    Woods JW, Falk RJ, Pittman AW, Klemmer PJ, Watson BS, Namboodiri K. Increased red-cell sodium-lithium countertransport in normotensive sons of hypertensive parents. N Engl J Med 1982; 306: 593–595.PubMedCrossRefGoogle Scholar
  60. 60.
    Mangili R, Bending JJ, Scott G, Li LK, Gupta A, Viberti GC. Increased sodium-lithium countertransport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J Med 1988; 318: 146–150.PubMedCrossRefGoogle Scholar
  61. 61.
    Fioretto P, Trevisan R, Doria A, Avogaro A, Semplicini A, Donadon V, Abbruzzese E, Crepaldi G, Viberti GC, Nosadini R. High sodium-lithium countertransport activity in red blood cells is associated with insulin resistance and cardiac and renal hypertrophy in insulin dependent diabetes before the onset of nephropathy. Diabetologia 1990; 33: 6.Google Scholar
  62. 62.
    Resnick LM. Calcium metabolism in hypertension and allied metabolic disorders. Diabetes Care 1991; 14: 505–520.PubMedCrossRefGoogle Scholar
  63. 63.
    Sowers JR, Zemel MB. Clinical implications of hypertension in the diabetic patient. Am J Hypertens 1990; 3: 415–424.PubMedCrossRefGoogle Scholar
  64. 64.
    Standley PR, Rose KA, Sowers JR. Increased basal arterial smooth muscle glucose transport in the Zucker rat. Am J Hypertens 1995; 8: 48–52.PubMedCrossRefGoogle Scholar
  65. 65.
    Draznin B, Sussman KE, Eckel RH, Kao M, Yost T, Sherman NA. Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J Clin Invest 1988; 28: 1848–1852.CrossRefGoogle Scholar
  66. 66.
    Levy J, Gavin JR, Hammerman MR, Avioli LV. Ca++/Mg++-ATPase activity in kidney basolateral membrane in non-insulin dependent diabetic rats. Effect of insulin. Diabetes 1987; 35: 899–905.Google Scholar
  67. 67.
    Yagi S, Takata S, Kiyokawa H, Yamamoto M, Noto Y, Ikeda T, Hattori N. Effects of insulin on vasoconstrictive responses to norepinephrine and angiotensin II in rabbit femoral artery and vein. Diabetes 1988; 37: 1064–1067.PubMedCrossRefGoogle Scholar
  68. 68.
    Segal S, Lloyd S, Sherman N, Sussman N, Sussman K, Draznin B. Post-prandial changes in cytosolic free calcium and glucose uptake in adipocytes in obesity and non-insulin dependent diabetes mellitus. Horm Res 1990; 34: 39–44.PubMedCrossRefGoogle Scholar
  69. 69.
    Draznin B. Cytosolic calcium and insulin resistance. Am J Kidney Dis 1993; 21: 32–38.PubMedGoogle Scholar
  70. 70.
    DeFronzo RA. »Clinical disorders of hyperkalemia«. In The Kidney: Physiology and Pathophysiology, D. Seldin, G. Giebisch, eds. New York: Raven Press, 1991; pp 1179–1206.Google Scholar
  71. 71.
    Tirupattur PR, Ram JL, Standley PR, Sowers JR. Regulation of Na+/K+-ATPase gene expression by insulin in vascular smooth muscle cells. Am J Hypertens 1993; 6: 626–629.PubMedCrossRefGoogle Scholar
  72. 72.
    Copeland KC, Sreekuran K. Recombinant human insulin-like growth factor-1 increases forearm blood flow. J Clin Endocrinol Metab 1994; 79: 230–232.PubMedCrossRefGoogle Scholar
  73. 73.
    Linas SL. The role of potassium in the pathogenesis and treatment of hypertension. Kidney Int 1991; 39: 771–786.PubMedCrossRefGoogle Scholar
  74. 74.
    Hilton PJ. Na+ transport in hypertension. Diabetes Care 1991; 14: 233–239.PubMedCrossRefGoogle Scholar
  75. 75.
    Cullen K, Stenhouse NS, Wearne KL, Welborn TA. Multiple regression analysis of risk factors for cardiovascular disease and cancer mortality in Busselton, Western Australia-13 year study. J Chronic Dis 1983; 36: 371–377.PubMedCrossRefGoogle Scholar
  76. 76.
    Fontbonne A, Charles MA, Thibult N, Richard JL, Claude JR, Warnet JM, Rosselin GE, Eschwege E. Hyperinsulinaemia as a predictor of coronary heart disease mortality in a healthy population: the Paris Prospective Study, 15-year follow-up. Diabetologia 1991; 34: 356–361.PubMedCrossRefGoogle Scholar
  77. 77.
    Pyorala K, Savolainen E, Kaukola S, Haapakoski J. Plasma insulin and coronary heart disease risk factor relationship to other risk factors and predictive value during 914-year follow-up of the Helsinki Policemen Study population. Acta Med Scand 1985; Suppl. 701: 38–52.Google Scholar
  78. 78.
    Turner RC, United Kingdom prospective diabetes study. III. Prevalence of hypertension and hypotensive therapy in patients with newly diagnosed diabetes. Hypertension 1985; Suppl. II: 8-13.Google Scholar
  79. 79.
    Stout RW. Insulin as a mitogenic factor: role in the pathogenesis of cardiovascular disease. Am J Med 1991; 90: 62S–65S.PubMedCrossRefGoogle Scholar
  80. 80.
    Cruz AB, Amatuzio DS, Grande F, Hay LJ. Effect of intraarterial insulin on tissue cholesterol and fatty acids in alloxan-diabetic dogs. Circ Res 1961; 9: 39–43.PubMedCrossRefGoogle Scholar
  81. 81.
    Duff GL, McMillan GC. The effect of alloxan diabetes on experimental cholesterol atherosclerosis in the rabbit. I. The inhibition of experimental cholesterol atherosclerosis in alloxan diabetes. II. The effect of alloxan diabetes on the retrogression of experimental cholesterol atherosclerosis. J Exp Med 1949; 89: 611–629.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Landin K, Tengborn L, Smith U. Elevated fibrinogen and plasminogen activator inhibitor (PAI-1) in hypertension are related to metabolic risk factors for cardiovascular disease. J Intern Med 1990; 227: 273–278.PubMedCrossRefGoogle Scholar
  83. 83.
    Nadler JL, Malayan S, Luong H, Shaw S, Natarajan R, Rude R. Intracellular free magnesium deficiency plays a key role in increased platelet reactivity in type II diabetes mellitus. Diabetes Care 1992; 15: 835–841.PubMedCrossRefGoogle Scholar
  84. 84.
    Carmassi F, Morale M, Puccetti R, DeNegri F, Monzani F, Navalesi R, Mariani G. Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb Res 1992; 67: 643–654.PubMedCrossRefGoogle Scholar
  85. 85.
    Lyons TJ, Lopes-Virella MF, Baystle JW. Glycation, oxidation, and glyoxidation in the pathogenesis of atherosclerosis in diabetes. Modern Med 1993; 61: Suppl. 2: 4–8.Google Scholar
  86. 86.
    Kaiser N, Sasson S, Feener EP, Bonkalja-Varoli N, Hagashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 1993; 42: 80–89.PubMedCrossRefGoogle Scholar
  87. 87.
    Sowers JR, Standley PR, Ram JL, Jacober S. Hyperinsulinemia, insulin resistance, and hyperglycemia: contributing factors in the pathogenesis of hypertension and atherosclerosis. Am J Hypertens 1993; 6: 260S–270S.PubMedGoogle Scholar
  88. 88.
    Inoguchi T, Xia P, Kunisaki M, Higashi S, Feener EP, King GL. Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Physiol 1994; 267: E369–E379.PubMedGoogle Scholar
  89. 89.
    Cagliero E, Roth T, Roy S, Lorenzi M. Characteristics and mechanisms of high-glucose-induced overexpression of basement membrane components in cultured human endothelial cells. Diabetes 1991; 40: 102–110.PubMedCrossRefGoogle Scholar
  90. 90.
    Bressler P, Bailey S, Saad R, DeFronzo RA. Insulin resistance and coronary artery disease: the missing link. Diabetes 1991; 41: Suppl.1: 24A.Google Scholar
  91. 91.
    Krolewski AS, Warram JH, Valsania P, Martin BC, Laffel L, Christlieb R. Evolving natural history of coronary artery disease in diabetes mellitus. Am J Med 1991; 90: Suppl. 2A: 565–615.Google Scholar
  92. 92.
    Castellino P, Shohat J, DeFronzo RA. Hyperfiltration and diabetic nephropathy. Is it the beginning? Or is it the end? Sem Nephrol 1990; 10: 228–241.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Anna Solini
    • 1
  • Ralph A. DeFronzo
    • 1
  1. 1.Department of Medicine IIUniversity of FerraraFerraraItaly

Personalised recommendations