Cation Transport, Hypertension and Diabetic Nephropathy

  • Ruggero Mangili


That diabetic nephropathy may not be a plain outcome of the metabolic abnormalities of diabetes, but may require the concomitance of a permissive genetic background, was initially suggested by the incidence pattern of proteinuria in insulin-dependent diabetes [1,2], and was later supported by the observation that renal destiny is often concordant among Type 1 diabetic siblings [3,4]. Family clustering of diabetic nephropathy may occur also in Type 2 diabetes [5,6], and closer evidence that this complication may reflect inheritance, partly independent of that of Type 2 diabetes, is indeed restricted to Pima Indians [6,7]. The heritability of nephropathy may not be directly explored in Type 1 diabetes, but the relevance of genetic factors to renal prognosis can be easily addressed. A classic approach to the detection of suitable markers of predisposition to complex genetic traits stems from the phenotype through the associated functional abnormalities that are weighed by genetic factors (i.e. intermediate phenotypes), in the hope to provide clues to the molecular and cellular pathophysiology of diabetic kidney disease.


Diabetic Nephropathy Essential Hypertension Urinary Albumin Excretion Cation Transport Diabetic Kidney Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR. The changing natural history of nephropathy in Type I diabetes. Am J Med 1985; 78: 785–794.PubMedCrossRefGoogle Scholar
  2. 2.
    Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T. Diabetic nephropathy in type I (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983; 25: 496–501.PubMedCrossRefGoogle Scholar
  3. 3.
    Seaqvist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989; 320: 1161–1165.CrossRefGoogle Scholar
  4. 4.
    Borch-Johnsen K, Nørgaard K, Hommel E, Mathiesen ER, Jensen JS, Deckert T, Parving H-H. Is diabetic nephropathy an inherited complication? Kidney Int 1992; 41: 719–722.PubMedCrossRefGoogle Scholar
  5. 5.
    Freedman BI, Turtle AB, Spray BJ. Familial predisposition to nephropathy in African-Americans with non-insulin-dependent diabetes mellitus. Am J Kidney Disease 1996; 25: 710–713.CrossRefGoogle Scholar
  6. 6.
    Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC. Family predisposition to renal disease in two generations of Pima Indians with Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1990; 33: 438–443.PubMedCrossRefGoogle Scholar
  7. 7.
    McCance DR, Hanson LS, Pettitt DJ, Jacobsson LTH, Bennett PH, Bishop DT, Knowler WC. Diabetic nephropathy: a risk factor for diabetes in offspring. Diabetologia 1995; 38: 221–226.PubMedCrossRefGoogle Scholar
  8. 8.
    Borch-Johnsen K, Andersen PK, Deckert T. The effect of proteinuria on relative mortality in type I (insulin-dependent) diabetes mellitus. Diabetologia 1985; 28: 290–596.CrossRefGoogle Scholar
  9. 9.
    Christlieb AR, Warram JH, Ganda OP, Asmal AC, Soeldner JS, Bradley RF. Hypertension: the major risk factor in juvenile-onset insulin-dependent diabetics. Diabetes 1981; 30: Suppl. 2: 90–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Viberti GC, Bilous RW, Mackintosh D, Keen H. Monitoring glomerular function in diabetic nephropathy. A prospective study. Am J Med 1983; 74: 256–264.PubMedCrossRefGoogle Scholar
  11. 11.
    Parving H-H, Andersen AR, Smidt UM, Hommel E, Mathiesen ER, Svendsen PA. Effect of antihypertensive treatment on kidney function in diabetic nephropathy. BMJ 1987; 294: 1443–1447.PubMedCrossRefGoogle Scholar
  12. 12.
    Wiseman MJ, Viberti GC, Mackintosh D, Jarrett RJ, Keen H. Glycaemia, arterial pressure and microalbuminuria in type I (insulin-dependent) diabetes mellitus. Diabetologia 1984; 26: 401–405.PubMedCrossRefGoogle Scholar
  13. 13.
    Derby L, Warram JH, Laffel LMB, Krolewski AS. Elevated blood pressure predicts the development of persistent proteinuria in the presence of poor glycémic control, in patients with type I diabetes. Diabete & Metabolisme 1989; 15: 320–326.Google Scholar
  14. 14.
    Christensen CK, Krusell LR, Mogensen CE. Increased blood pressure in diabetes: essential hypertension or diabetic nephropathy? Scand J Clin Lab Invest 1987; 47: 363–370.PubMedCrossRefGoogle Scholar
  15. 15.
    Microalbuminuria Collaborative Study Group United Kingdom. Risk factors for development of microalbuminuria in insulin-dependent diabetic patients: a cohort study. BMJ 1993; 306: 1235–1239.CrossRefGoogle Scholar
  16. 16.
    Mathiesen ER, Ronn B, Jensen T, Storm B, Deckert T. Relationship between blood pressure and urinary albumin excretion in the development of microalbuminuria. Diabetes 1990; 39: 245–250.PubMedCrossRefGoogle Scholar
  17. 17.
    Coonrod BA, Ellis B, Becker DJ, Bunker CH, Kelsey SF, Lloyd CE, Drash AL, Kuller LH, Orchard TJ. Predictors of microalbuminuria in individuals with IDDM: Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care 1993; 16: 1376–1383.PubMedCrossRefGoogle Scholar
  18. 18.
    The Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 1995; 47: 1703–1720.CrossRefGoogle Scholar
  19. 19.
    Viberti GC, Keen H, Wiseman MJ. Raised arterial pressure in parents of proteinuric insulin dependent diabetics. BMJ 1987; 295: 515–517.PubMedCrossRefGoogle Scholar
  20. 20.
    Krolewski AS, Canessa M, Warram JH, Laffel LMB, Christlieb AR, Knowler WC, Rand LI. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 1988; 318: 140–145.PubMedCrossRefGoogle Scholar
  21. 21.
    Jensen JS, Mathiesen ER, Nqrgaard K, Hommel E, Borch-Johnsen K, Funder J, Brahm J, Parving H-H, Deckert T. Increased blood pressure and erythrocyte sodium-lithium countertransport activity are not inherited in diabetic nephropathy. Diabetologia 1990; 33: 619–624.PubMedCrossRefGoogle Scholar
  22. 22.
    Nørgaard K, Mathiesen ER, Hommel E, Jensen JS, Parving H-H. Lack of familial predisposition to cardiovascular disease in Type 1 (insulin-dependent) diabetic patients with nephropathy. Diabetologia 1991; 34: 370–372.PubMedCrossRefGoogle Scholar
  23. 23.
    Earle K, Walker J, Hill C, Viberti GC. Familial clustering of cardiovascular disease in patients with insulin-dependent diabetes and nephropathy. N Engl J Med 1992; 326: 673–677.PubMedCrossRefGoogle Scholar
  24. 24.
    Hasstedt SJ, Wu LL, Kuida H, Williams RR. Recessive inheritance of a high number of sodium pump sites. Am J Med Genet 1989; 34: 332–337.PubMedCrossRefGoogle Scholar
  25. 25.
    Cusi D, Fossali E, Piazza A, Tripodi G, Barlassina C, Pozzoli E, Vezzoli G, Stella P, Soldati L, Bianchi G. Heritability estimate of erythrocyte Na-K-Cl cotransport in normotensive and hypertensive families. Am J Hypertens 1991; 4: 725–734.PubMedGoogle Scholar
  26. 26.
    Canessa M, Adragna N, Solomon HS, Connolly TM, Tosteson DC. Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 1980; 302: 772–776.PubMedCrossRefGoogle Scholar
  27. 27.
    Hasstedt SJ, Wu LL, Ash KO, Kuida H, Williams RR. Hypertension and sodium-lithium countertransport in Utah pedigrees: evidence for major locus inheritance. Am J Hum Genet 1988; 43: 14–22.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Boerwinkle E, Turner ST, Weishilboum R, Johnson M, Richelson E, Sing CF. Analysis of the distribution of erythrocyte sodium lithium countertransport in a sample representative of the general population. Genet Epidemiol 1986; 3: 365–378.PubMedCrossRefGoogle Scholar
  29. 29.
    Williams RR, Hasstedt SJ, Hunt SC, Wu LL, Ash KO. Genetic studies of cation tests and hypertension. Hypertension 1987; 10: Suppl. I: I–37–I–41.Google Scholar
  30. 30.
    Turner ST, Weidman WH, Michels W, Reed TJ, Ormson CL, Fuller T, Sing CF. Distribution of sodium-lithium countertransport and blood pressure in Caucasians five to eighty-nine years of age. Hypertension 1989; 13: 378–391.PubMedCrossRefGoogle Scholar
  31. 31.
    Turner ST, Rebbeck TR, Sing CF. Sodium-lithium countertransport and probability of hypertension in Caucasians 47 to 89 years old. Hypertension 1992; 20: 841–850.PubMedCrossRefGoogle Scholar
  32. 32.
    Mangili R, Bending JJ, Scott G, Li LK, Gupta A, Viberti GC. Increased sodium-lithium countertransport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J Med 1988; 318: 146–150.PubMedCrossRefGoogle Scholar
  33. 33.
    Woods JW, Falk RJ, Pittman AW, Klemmer PJ, Watson BS, Namboodiri K. Increased red-cell sodium-lithium countertransport in normotensive sons of hypertensive parents. N Engl J Med 1982; 306: 593–595.PubMedCrossRefGoogle Scholar
  34. 34.
    Rota R, Timsit J, Hannedouche T, Ikeni A, Boitard C, Guicheney P. Erythrocyte Na7Li+ countertransport and glomerular hyperfiltration in insulin-dependent diabetics. Am J Hypertens 1993; 6: 534–537.PubMedGoogle Scholar
  35. 35.
    Jones SL, Trevisan R, Tariq T, Semplicini A, Mattock M, Walker JD, Nosadini R, Viberti GC. Sodium-lithium countertransport in microalbuminuric insulin-dependent diabetic patients. Hypertension 1990; 15: 570–575.PubMedCrossRefGoogle Scholar
  36. 36.
    Elving LD, Wetzels JFM, de Nobel E, Berden JHM. Erythrocyte sodium-lithium countertransport is not different in Type 1 (insulin-dependent) diabetic patients with and without diabetic nephropathy. Diabetologia 1991; 34: 126–128.PubMedCrossRefGoogle Scholar
  37. 37.
    Rutherford PA, Thomas TH, Carr SJ, Taylor R, Wilkinson R. Changes in erythrocyte sodium-lithium countertransport kinetics in diabetic nephropathy. Clin Sci 1992; 82: 301–307.PubMedGoogle Scholar
  38. 38.
    Barzilay J, Warram JH, Bak M, Laffel LMB, Canessa M, Krolewski AS. Predisposition to hypertension: risk factor for nephropathy and hypertension in IDDM. Kidney Int 1992; 41: 723–730.PubMedCrossRefGoogle Scholar
  39. 39.
    Lopes de Faria JB, Friedman R, Tariq T, Viberti GC. Prevalence of raised sodium-lithium countertransport activity in Type 1 diabetic patients. Kidney Int 1992; 41: 877–882.PubMedCrossRefGoogle Scholar
  40. 40.
    Elving LD, Wetzels JFM, De Pont JJHHM, Berden JHM. Is increased erythrocyte sodium-lithium countertransport a useful marker for diabetic nephropathy? Kidney Int 1992; 41: 862–871.PubMedCrossRefGoogle Scholar
  41. 41.
    Mangili R, Zerbini G, Barlassina C, Cusi D, Pozza G. Sodium-lithium countertransport and triglycerides in diabetic nephropathy. Kidney Int 1993; 44: 127–133.PubMedCrossRefGoogle Scholar
  42. 42.
    Canessa M, Zerbini G, Laffel LMB. Sodium activation kinetics of red blood cell Na/Li countertransport in diabetes: methodology and controversy. J Am Soc Nephrol 1992; 3: S41–S49.PubMedGoogle Scholar
  43. 43.
    Mangili R, Gabellini D, Pozza G. The concomitants of erythrocyte sodium-lithium countertransport activity in diabetic nephropathy: a critical assessment. Acta Diabetol 1992; 29: 221–226.CrossRefGoogle Scholar
  44. 44.
    Mangili R. »Cation transport, hypertension and diabetic nephropathy.« In The Kidney and Hypertension in Diabetes Mellitus, 2nd ed. Mogensen CE, ed. Boston, Dordrecht, London: Kluwer Academic Publishers, 1994; pp 273–283.CrossRefGoogle Scholar
  45. 45.
    Semplicini A, Mozzato MG, Samà B, Nosadini R, Fioretto P, Trevisan R, Pessina AC, Crepaldi G, DalPalu C. Na/H and Li/Na exchange in red blood cells of normotensive and hypertensive patients with insulin dependent diabetes mellitus (IDDM). Am J Hypertens 1989; 2: 174–177.PubMedGoogle Scholar
  46. 46.
    Walker JD, Tariq T, Viberti GC. Sodium-lithium countertransport activity in red cells of patients with insulin dependent diabetes and nephropathy and their parents. BMJ 1990; 301: 635–638.PubMedCrossRefGoogle Scholar
  47. 47.
    Chiarelli F, Verrotti A, Kalter-Leibovici O, Laron Z, Morgese G. Genetic predisposition to hypertension (as detected by Na/Li countertransport) and risk of nephropathy in childhood diabetes. J Paediatr Child Health 1994; 30: 547–549.PubMedCrossRefGoogle Scholar
  48. 48.
    Cusi D, Barlassina C, Ferrandi M, Lupi P, Ferrari P, Bianchi G. Familial aggregation of cation transport abnormalities and essential hypertension. Clin Exp Hypertens 1981; 3: 871–874.PubMedCrossRefGoogle Scholar
  49. 49.
    Gall MA, Rossing P, Jensen JS, Funder J, Parving H-H. Red cell Na/Li countertransport in non-insulin-dependent diabetics with diabetic nephropathy. Kidney Int 1991; 39: 135–140.PubMedCrossRefGoogle Scholar
  50. 50.
    Herman WH, Prior DE, Yassine MD, Weder AB. Nephropathy in NIDDM is associated with cellular markers for hypertension. Diabetes Care 1993; 16: 815–818.PubMedCrossRefGoogle Scholar
  51. 51.
    Nosadini R, Cipollina MR, Solini A, Sambataro M, Morocutti A, Doria A, Fioretto P, Brocco E, Muollo B, Frigato F. Close relationship between microalbuminuria and insulin resistance in essential hypertension and non-insulin-dependent diabetes mellitus. J Am Soc Nephrol 1992; 3: S56–S63.PubMedGoogle Scholar
  52. 52.
    Pinkney JH, Foyle W-J, Denver AE, Mohamed-Ali V, McKinlay S, Yudkin JS. The relationship of urinary albumin excretion rate to ambulatory blood pressure and erythrocyte sodium-lithium countertransport in NIDDM. Diabetologia 1995; 38: 356–362.PubMedCrossRefGoogle Scholar
  53. 53.
    Fujita J, Tsuda K, Seno M, Obayashi H, Fukui I, Seino Y. Erythrocyte sodium-lithium countertransport activity as a marker of predisposition to hypertension and diabetic nephropathy in NIDDM. Diabetes Care 1994; 17: 977–982.PubMedCrossRefGoogle Scholar
  54. 54.
    Mangili R, Zerbini G, Garbetta F, Cusi D, Pastore MR, Bognetti E, Pozza G. Erythrocyte sodium-lithium countertransport and risk of nephropathy in Type 1 (insulin-dependent) diabetes mellitus (Abstract). Diabetologia 1990; 33: A12.Google Scholar
  55. 55.
    Haas M, Schooler J, Tosteson DC. Coupling of lithium to sodium transport in human red cells. Nature 1975; 258: 425–427.PubMedCrossRefGoogle Scholar
  56. 56.
    Duhm J, Becker BF. Studies on lithium transport across the red cell membrane. V On the nature of the Na-dependent Li countertransport system of mammalian erythrocytes. J Membrane Biol 1979; 51: 263–286.CrossRefGoogle Scholar
  57. 57.
    Parker JC. Interactions of lithium and protons with the sodium-proton exchanger of dog red blood cells. J Gen Physiol 1986; 87: 189–200.PubMedCrossRefGoogle Scholar
  58. 58.
    Morgan K, Canessa M. Interactions of external and internal H+ and Na+ with Na+Na+ and Na+/H+ exchange of rabbit red cells: evidence of a common pathway. J Membrane Biol 1990; 118: 193–214.CrossRefGoogle Scholar
  59. 59.
    Kinsella JL, Aronson PA. Interactions of NH4 and Li with the renal microvillus membrane Na-H exchanger. Am J Physiol 1981; 241: C220–C226.PubMedGoogle Scholar
  60. 60.
    Ives HE, Yee VJ, Warnock DG. Mixed type inhibition of the renal Na/H antiporter by Li and amiloride. J Biol Chem 1983; 258: 9710–9716.PubMedGoogle Scholar
  61. 61.
    Kahn AM, Allen JC, Cragoe EG, Jr., Zimmer R, Shelat H. Sodium-lithium exchange in sarcolemmal vesicles from canine superior mesenteric artery. Circ Res 1988; 62: 478–485.PubMedCrossRefGoogle Scholar
  62. 62.
    Kahn AM, Allen JC, Cragoe EG, Jr., Shelat H. Sodium-lithium exchange and sodium-proton exchange are mediated by the same transport system in sarcolemmal vesicles from bovine superior mesenteric artery. Circ Res 1989; 65: 818–828.PubMedCrossRefGoogle Scholar
  63. 63.
    Rosskopf D, Frömter E, Siffert W. Hypertensive sodium-proton exchanger phenotype persists in immortalized lymphoblasts from essential hypertensive patients. J Clin Invest 1993; 92: 2553–2559.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sweeney FP, Siczkowski M, Davies JE, Quinn PA, McDonald J, Krolewski B, Krolewski AS, Ng LL. Phosphorylation and activity of Na/H exchanger isoform 1 of immortalized lymphoblasts in diabetic nephropathy. Diabetes 1995; 44: 1180–1185.PubMedCrossRefGoogle Scholar
  65. 65.
    Lifton RP, Hunt SC, Williams RR, Pouysségur J, Lalouel J-M. Exclusion of the Na-H antiporter as a candidate gene in human essential hypertension. Hypertension 1991; 17: 8–14.PubMedCrossRefGoogle Scholar
  66. 66.
    Corry DB, Tuck ML, Nicholas S, Weinman EJ. Increased Na/H antiport activity and abundance in uremic red blood cells. Kidney Int 1993; 44: 574–578.PubMedCrossRefGoogle Scholar
  67. 67.
    Delva P, Pastori C, Degan M, Montesi G, Bassi A, Lechi A. Erythrocyte Na-H exchanger and Na-Li countertransport activity in primary aldosteronism. Eur J Clin Invest 1994; 24: 794–798.PubMedCrossRefGoogle Scholar
  68. 68.
    Jennings ML, Adams-Lackey M, Cook KW. Absence of significant sodium-hydrogen exchange by rabbit erythrocyte sodium-lithium countertransporter. Am J Physiol 1985; 249: C63–C68.PubMedGoogle Scholar
  69. 69.
    Pandey GN, Sarkadi B, Haas M, Gunn RB, Davis JM, Tosteson DC. Lithium transport pathways in human red blood cells. J Gen Physiol 1978; 72: 233–247.PubMedCrossRefGoogle Scholar
  70. 70.
    Kahn AM. Difference between human red blood cell Na-Li countertransport and renal Na-H exchange. Hypertension 1987; 9: 7–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Canessa M, Morgan K, Semplicini A. Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension. J Cardiovasc Pharmacol 1988; 12: Suppl. 3: 92–98.CrossRefGoogle Scholar
  72. 72.
    Semplicini A, Spalvins A, Canessa M. Kinetics and stoichiometry of the human red cell Na/H exchanger. J Membrane Biol 1989; 107: 219–228.CrossRefGoogle Scholar
  73. 73.
    Huot SJ, Aronson PS. Na+-H+ exchanger and its role in essential hypertension and diabetes mellitus. Diabetes Care 1991; 14: 521–535.PubMedCrossRefGoogle Scholar
  74. 74.
    Noël J, Pouysségur J. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na/H exchanger isoforms. Am J Physiol 1995; 268: C283–C296.PubMedGoogle Scholar
  75. 75.
    Hilton PJ. Na+ transport in hypertension. Diabetes Care 1991; 14: 233–239.PubMedCrossRefGoogle Scholar
  76. 76.
    Doria A, Fioretto P, Avogaro A, Carraro A, Morocutti A, Trevisan R, Frigato F, Crepaldi G, Viberti GC, Nosadini R. Insulin-resistance is associated with high sodium-lithium countertransport in essential hypertension. Am J Physiol 1991; 261: E684–E691.PubMedGoogle Scholar
  77. 77.
    Nosadini R, Semplicini A, Fioretto P, Lusiani L, Trevisan R, Donadon V, Zanette G, Nicolosi GL, Dall’Aglio V, Zanuttini D, Viberti GC. Sodium-lithium countertransport and cardiorenal abnormalities in essential hypertension. Hypertension 1991; 18: 191–198.PubMedCrossRefGoogle Scholar
  78. 78.
    Lawson ML, Sochett EB, Chait PG, Balfe JW, Daneman D. Effect of puberty on markers of glomerular hypertrophy and hypertension in IDDM. Diabetes 1996; 45: 51–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Lopes de Faria JB, Jones SL, MacDonald F, Chambers J, Mattock MB, Viberti GC. Sodium-lithium countertransport activity and insulin resisrance in normotensive IDDM patients. Diabetes 1992; 41: 610–615.PubMedCrossRefGoogle Scholar
  80. 80.
    Trevisan R, Nosadini R, Fioretto P, Semplicini A, Donadon V, Doria A, Nicolosi G, Zanuttini D, Cipollina MR, Luisiani L, Avogaro A, Crepaldi G, Viberti GC. Clustering of risk factors in hypertensive insulin-dependent diabetics with high sodium-lithium countertransport. Kidney Int 1992; 41: 855–861.PubMedCrossRefGoogle Scholar
  81. 81.
    Catalano C, Winocour PH, Thomas TH, Walker M, Sum CF, Wilkinson R, Alberti KGMM. Erythrocyte sodium-lithium countertransport activity and total body insulin-mediated glucose disposal in normoalbuminuric normotensive Type 1 (insulin-dependent) diabetic patients. Diabetologia 1993; 36: 52–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Carr S, Mbanya J-C, Thomas T, Keavey P, Taylor R, Alberti KGMM. Increase in glomerular filtration rate in patients with insulin-dependent diabetes and elevated erythrocyte sodium-lithium countertransport. N Engl J Med 1990; 322: 500–504.PubMedCrossRefGoogle Scholar
  83. 83.
    Weder AB. Red-cell lithium-sodium countertransport and renal lithium clearance in hypertension. N Engl J Med 1986; 314: 198–201.PubMedCrossRefGoogle Scholar
  84. 84.
    Weinberger MH, Smith JB, Fineberg NS, Luft FC. Red-cell sodium-lithium countertransport and fractional excretion of lithium in normal and hypertensive humans. Hypertension 1989; 13: 206–212.PubMedCrossRefGoogle Scholar
  85. 85.
    Hunt SC, Stephenson SH, Hopkins PN, Hasstedt SJ, Williams RR. A prospective study of sodium-lithium countertransport and hypertension in Utah. Hypertension 1991; 17: 1–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Cirillo M, Laurenzi M, Trevisan M, Panarelli W, Angeletti M, Stamler R, Stamler J: For the Gubbio Study Research Group. Sodium-lithium countertransport independently predicts 6-year incidence of hypertension in the Gubbio Population Study. J Am Soc Nephrol 1994; 5: 538.Google Scholar
  87. 87.
    Williams GH. Genetic approaches to understanding the pathophysiology of complex human traits. Kidney Int 1994; 46: 1550–1553.PubMedCrossRefGoogle Scholar
  88. 88.
    Williams RR, Hunt SC, Hopkins PN, Hasstedt SJ, Wu LL, Lalouel JM. Tabulations and expectations regarding the genetics of human hypertension. Kidney Int 1994; 45: Suppl. 44: S57–S64.Google Scholar
  89. 89.
    Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265: 2037–2048.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ruggero Mangili
    • 1
  1. 1.Divisione di Medicina IIstituto di Ricovero e Cura a Carattere ScientificoMilanoItaly

Personalised recommendations