Advertisement

DAE-Index Increase in Analogue Fault Simulation

  • Bernd Straube
  • Kurt Reinschke
  • Wolfgang Vermeiren
  • Klaus Röbenack
  • Bert Müller
  • Christoph Clauß
Chapter

Abstract

In this paper, we investigate the importance of DAE-index in analogue fault simulation. The authors show that high indices which result from fault injection can lead to problems in numerical simulation. Methods for index computation which can be appended to standard fault detection schemes allow the prediction of potential numerical instabilites. Some suggestions to tackle such index problems will be discussed. Examples of the use of our index approach are given.

Keywords

Operational Amplifier Fault Injection System Design Automation Open Fault Fault Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. M. Bell, S. J. Spinks: Analogue Fault Simulation for the Structural Approach to Analogue and Mixed-signal IC Testing. International Mixed Signal Testing Workshop, June 20–22, 1995, Grenoble/Villard de Lans, France. Collection of Papers, pp. 10–14.Google Scholar
  2. [2]
    K. E. Brenan, S. L. Campbell, L. R. Petzold: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, 1989.Google Scholar
  3. [3]
    P. Caunegre, C. Abraham: Fault Simulation for Mixed-Signal Systems. Journal of Electronic Testing: Theory and Application (JETTA), vol. 8 (1996) No.2, April 1996, pp.143152.Google Scholar
  4. [4]
    E. Griepentrog, R. März: Differential-Algebraic Equations and Their Numerical Treatment. Band 88 aus Teuber-Texte zur Mathematik, Teubner Verlagsgesellschaft, Leipzig, 1986.Google Scholar
  5. [5]
    M. Günther, U. Feldmann: The DAE-Index in Electric Circuit Simulation. Proc. IMACS Symp. Mathematical Modelling. (Ed. I. Troch, F. Breitenecker) vol. 4, pp. 695–702, 1994Google Scholar
  6. [6]
    M. Günther, U. Feldmann. CAD based electric circuit modeling. Part I: Mathematical structure and index of network equations. Surv. Math. Ind. (1999) 8, pp. 97–129MATHGoogle Scholar
  7. [7]
    M. Günther, U. Feldmann: CAD based electric circuit modeling. Part II: Impact of network structure and parameters. Surv. Math. Ind. (1999) 8, pp. 131–157MATHGoogle Scholar
  8. [8]
    E. Hairer, Ch. Lubich, M. Roche: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Band 1409 aus Lecture Notes in Mathematics, Springer-Verlag, 1989.Google Scholar
  9. [9]
    Hennig, E. and T. Halfmann. 1998. Analog Insydes Tutorial. ITWM, Kaiserslautern, GermanyGoogle Scholar
  10. [10]
    W. Kampowsky, P. Rentrop, W. Schmidt: Classification and Numerical Simulation of Electric Circuits. Surveys on Mathematics for Industry (1992) 2, pp. 23–65.MathSciNetMATHGoogle Scholar
  11. [11]
    März, R., Numerical methods for differential-algebraic equations. Acta Numerica, 1991, pp. 141–198.Google Scholar
  12. [12]
    K. Matz, C. Clauß: Zur Simulationspraxis bei DAE’s mit höherem Index. 4. GMM/ITG Diskussionssitzung-Entwicklung von Analogschaltungen mit CAE-Methoden, Berlin, Oktober 1997, pp. 101–108Google Scholar
  13. [13]
    K. Matz, C. Clauß: Simulation Support by Index Computation. 15th IMACS World Congress, Berlin, Aug. 1997Google Scholar
  14. [14]
    K. Reinschke, K. Röbenack: Graphentheoretische Bestimmung des strukturellen Index von Algebro-Differential-Gleichungssystemen für die Netzwerkanalyse. In W. Mathis, P. Noll (Hrsg.): Neue Anwendungen theoretischer Konzepte in der Elektrotechnik-Tagungsberichte der 2. ITG-Diskussionssitzung vom 21.-22. April 1995 in Berlin, pp. 207–214, VDE-Verlag, 1996.Google Scholar
  15. [15]
    K. Röbenack, K. Reinschke: Graph-theoretically determined Jordan block size structure of regular matrix pencils, Linear Algebra Appl. 263 (1997), pp. 333–348.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    G. Reißig, U. Feldmann: Computing the generic index of the circuit equations of linear active networks. In Proc. Int. Symp. on Circuits and Systems (ISCAS), Altanta, 12.-15. Mai 1996, Band III, pp. 190–193.Google Scholar
  17. [17]
    B. Straube, W. Vermeiren, B. Müller, Ch. Hoffmann, S. Sattler: Analoge Fehlersimulation mit aFSIM. Analog’99, 5. ITG/GMM-Diskussionssitzung ‘Entwicklung von Analogschaltungen mit CAE-Methoden’, Munich, Februar 1999Google Scholar
  18. [18]
    M. Sachdev: A Defect Oriented Testability Methodology for Analog Circuits. Journal of Electronic Testing: Theory and Applications (JETTA) vol. 6 (1995) no. 3 (June), pp. 265–276.Google Scholar
  19. [19]
    Chr. Sebeke, J. P. Teixeira, M. J. Ohletz: Automatic Fault Extraction and Simulation of Layout Realistic Faults for Integrated Analogue Circuits. European Design and Test Conference 1995, Paris, France, March 6–9, 1995, pp. 464–468.Google Scholar
  20. [20]
    B. Straube, K. Reinschke, W. Vermeiren, K. Röbenack: Indexveränderung durch Fehlerinjektion. Technical Report SFB 358-C1D5–1/97, TU DresdenGoogle Scholar
  21. [21]
    B. Straube, W. Vermeiren, A. Holubek, M. J. Ohletz, M. Dhifi: Analogue Fault Simulation Tools aFSIM and AnaFAULT. 8. ITG/GI/GME-Workshop „Testmethoden und Zuverlässigkeit von Schaltungen und Systemen“, Otzenhausen, 3.- 5. März 1996, pp. 78–80.Google Scholar
  22. [22]
    W. Vermeiren, B. Straube, G Elst: A Suggestion for Accelerating the Analogue Fault Simulation. In: Proc. EDAC-ETC-EUROASIC 1994, Paris, France, Feb. 28-March 3, p. 662, IEEE Comp. Society Press, Los Alamitos, CA, 1994Google Scholar
  23. [23]
    Wolfram, S., Mathematica-Ein System für Mathematik auf dem Computer. Addison-Wesley Publishing Company, 1992.Google Scholar
  24. [24]
    U. Feldmann, M. Hasler: Inverse System Realisation with Operational Amplifier-Stability vs. nonideal Op.-Amp. characteristics. NDES’95, 1995, pp. 139–142.Google Scholar
  25. [25]
    U. Feldmann, M. Hasler, W. Schwarz: On the design of a synchronizing inverse of a chaotic system. ECCTD’95, Istanbul, 1995, pp. 479–482.Google Scholar
  26. [26]
    U. Feldmann, M. Hasler, W. Schwarz: Communication by Chaotic Systems: The Inverse Systems Approach. Int. J. Circuit Theory and Applications 24 (1996) 5, pp. 531–579.Google Scholar
  27. [27]
    L. O. Chua: The genesis of Chua’s circuit. Archiv für Elektrotechnik und Übertragungstechnik 46 (1992) 4, pp. 250–257.Google Scholar
  28. [28]
    A. Isidori: Nonlinear Control Systems. 3. Edition, Springer-Verlag, 1995.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Bernd Straube
    • 1
  • Kurt Reinschke
    • 2
  • Wolfgang Vermeiren
    • 1
  • Klaus Röbenack
    • 2
  • Bert Müller
    • 1
  • Christoph Clauß
    • 1
  1. 1.Design Automation Department EAS DresdenFraunhofer-Institut für Integrierte Schaltungen, ErlangenGermany
  2. 2.Fakultät Elektrotechnik, Institut für Regelungs- und SteuerungstheorieTechnische Universität DresdenGermany

Personalised recommendations