High Level Structural Synthesis of Analog Subsystems — The Information to Electrical Domain Mapping

  • Jürgen Kampe


High level design representations are oriented towards information processing, and enables structural synthesis steps on the basis of directed information flow graphs. From the electrical energy flow point of view, electrical circuits are synthesized by using electrical engineering approaches. This paper presents a methodology to over-step the gap between high-level, and electrical design representations. The transformation of the directed signal parameter flow into the electrical domain is performed by a formal approach. The description of an analog implementation of a changeover switch serves as example for the specific design flow.


Transformation Rule Design Representation Analog Circuit Flow Graph System Design Automation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. E. Allen and P. R. Barton. A silicon compiler for successive approximation A/D and D/A converters. In Proc. IEEE Custom Integrated Circuits Conf., pages 552–555, 1986.Google Scholar
  2. [2]
    M. G. R. Degrauwe et al. IDAC: An interactive design tool for analog cmos circuits. IEEE J. Solid-State Circuits, 22 (6): 1106–1115, Dec. 1987.CrossRefGoogle Scholar
  3. [3]
    J. G. Kenney and L. R. Carley. CLANS: A high-level synthesis tool for high resolution data converters. In Proc. IEEE Int. Conf. Comput. Aided Design, pages 496–499, 1988.Google Scholar
  4. [4]
    E. Berkcan, M. d’Abreu, and W. Laughton. Analog compilation based on successive decompositions. In Proc. ACM/IEEE-CS Design Automation Conference, pages 369–375, 1988.Google Scholar
  5. [5]
    R. Harjani, R. A. Rutenbar, and L. R. Carley. Oasys: A framework for analog circuit synthesis. IEEE Trans. Computer Aided Design, 8 (12): 1247–1265, Dec. 1989.CrossRefGoogle Scholar
  6. [6]
    El Turky Fatehy and E. E. Perry. BLADES: An artificial intelligence aproach to analog circuit design. IEEE Transaction on Computer-Aided Design, 8 (6): 680–691, June 1989.CrossRefGoogle Scholar
  7. [7]
    A. H. Fung, B. W. Lee, and B. J. Sheu. Self-reconstructing technique for expert system-based analog is designs. IEEE Trans. on Circuits and Systems, 36 (2): 318–319, Feb. 1989.CrossRefGoogle Scholar
  8. [8]
    G. Jusuf, P. R. Gray, and A. L. Sangiovanni-Vincentelli. CADICS-Cyclic analog-to-digital converter synthesis. In Proc. IEEE Int. Conf. Comput. Aided Design, pages 286–289, 1990.Google Scholar
  9. [9]
    S. G. Sabiro, P. Senn, and M. S. Tawfik. HiFADiCC: A prototype framework of a highly flexible analog to digital converter silicn compiler. In Proc. IEEE Int. Symp. Circuits Syst., pages 1114–1117, 1990.CrossRefGoogle Scholar
  10. [10]
    G. F. M. Beenker, J. D. Conway, G. Schrooten, and A. G. J. Slenter. Analog CAD for consumer ICs. Proc. Advances in Analog Circuit Design, 1992.Google Scholar
  11. [11]
    H. Chang and A. Sangiovanni-Vincentelli et al. A top-down, constraint-driven design methodology for analog integrated circuits. In IEEE CICC, May 1992.Google Scholar
  12. [12]
    E. S. Ochotta, R. L. Carley, and R. A. Rutenbar. ASTRX/OBLX: Tools for Rapid Synthesis of High Performance analog Circuits. In ACM/IEEE DAC, pages 24–30, June 1994.Google Scholar
  13. [13]
    W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits. DELIGHT.SPICE: An Optimization-Based System for the Design of Integrated Circuits. IEEE Transactions on Computer-Aided Design, 7 (4): 501–519, April 1988.CrossRefGoogle Scholar
  14. [14]
    F. Medeiro, F. V. Fernandez, R. Dominguez-Castro, and A. Rodriguez-Vazquez. A Statistical Optimization-Based Approach for Automated Sizing of Analog Cells. In IEEE/ACM International Conference on CAD, pages 594–597, 1994.Google Scholar
  15. [15]
    H. Onodera, H. Kanbara, and K. Tamaru Operational amplifier compilation with performance optimization. IEEE J. Solid-State Circuits, 25 (2): 446–473, Apr. 1990.CrossRefGoogle Scholar
  16. [16]
    G. G. E. Gielen, H. C. C. Walscharts, and W. M. C. Sansen. ISAAC: A symbolic simulator for analog integrated circuits. IEEE J. Solid-State Circuits, 24 (6): 1587–1596, Dec. 1989.CrossRefGoogle Scholar
  17. [17]
    J. P. Harvey, I. E. Mohamed, and B. Leung. STAIC: An Interactive framework for Synthesizing CMOS and BiCMOS Analog Circuits. IEEE Transactions on Computer-Aided Design, 11 (11): 1402–1417, November 1992.CrossRefGoogle Scholar
  18. [18]
    N. C. Horta and J. E. Franca. Automatic synthesis of data conversion systems using symbolic techniques. Proc. IEEE Midwest Symp. Circuits Systems, pages 877–880, 1995.Google Scholar
  19. [19]
    C. Grimm, R. Heuschen, and K. Waldschmidt. Top-down design of mixed-signal systems with kandis. In Workshop on System Design Automation SDA98, pages 161–167, Dresden University of Technology, Dresden, March 1998.Google Scholar
  20. [20]
    J. Kampe. A new methodology for the structural synthesis of analog blocks. In IONS’98 Implementation Of spiking Neural Systems, TU Ilmenau, Nov. 1998.Google Scholar
  21. [21]
    J. Kampe. High level modeling of an analog modulo operator. In IONS’98 Implementation Of spiking Neural Systems, TU Ilmenau, Nov. 1998.Google Scholar
  22. [22]
    J. Hichert and J. Kampe. A global optimization method and its application to the sizing of analog functional blocks. In Proc. International Workshop on Global Optimization Go. 99, Firenze ( Italy ), Sept. 1999.Google Scholar
  23. [23]
    S. J. Mason. Feedback theory — some properties of signal flow graphs. Proc. I. R. E., 41 (9): 1144–1156, Sept. 1953.CrossRefGoogle Scholar
  24. [24]
    S. J. Mason. Feedback theory — further properties of signal flow graphs. Proc. I. R. E., 44 (7): 920–926, July 1956.CrossRefGoogle Scholar
  25. [25]
    K. C. Gupta, R. Garg, and R. Chadha. Computer-Aided Design of Microwave Circuits. Artech House Inc., Canton, 1981.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Jürgen Kampe
    • 1
  1. 1.Ilmenau Technical UniversityGermany

Personalised recommendations