Advertisement

Switched-Current Systems

  • Bengt E. Jonsson
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 561)

Abstract

Switched-current circuits have found applications in sampled-data signal processing and data-conversion. This chapter serves as to give an overview of what has been done in the fields of sampled-data filters, Nyquist A/Dconverters and oversampling A/D-converters. The intention is to give references for further reading, and to define a context for the implementations and theoretical work described in the remainder of the book.

Keywords

Circuit Realization Analog Integrate Circuit Wave Digital Filter Ladder Filter Interstage Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. B. Hughes, N. C. Bird, and I. C. Macbeth, “Switched Currents — A New Technique for Analog Sampled-Data Signal Processing”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Portland, Oregon, pp. 1584–1587, May 1989, IEEE.Google Scholar
  2. [2]
    D. Vallancourt, and Y. P. Tsividis, “Sampled-Current Circuits”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Portland, Oregon, pp. 1592–1595, May 1989, IEEE.Google Scholar
  3. [3]
    B. Jonsson, and S. Eriksson, “Current-Mode N-port Adaptors for Wave SI Filters”, Electron. Lett., Vol. 29, No. 10, pp. 925–926, May 1993.CrossRefGoogle Scholar
  4. [4]
    B. Jonsson, and S. Eriksson, “A Low Voltage Wave SI Filter Implementation Using Improved Delay Elements”, Proc. of Int. Symp. Circuits And Systems (ISCAS), London, UK, pp. 5.305–5. 308, May 1994, IEEE.Google Scholar
  5. [5]
    L. Wanhammar, DSP Integrated Circuits, Academic Press Series in Engineering, 1999.Google Scholar
  6. [6]
    G. Liang, and D. J. Allstot, “FIR Filtering Using CMOS Switched-Current Techniques”, Proc. of Int. Symp. Circuits And Systems (ISCAS), New Orleans, Louisiana, pp. 2291–2293, May 1990, IEEE.Google Scholar
  7. [7]
    D. J. Allstot, T. S. Fiez, and G. Liang, “Design Considerations for CMOS SwitchedCurrent Filters”, Proc. of Custom Int. Circ. Conf, Boston, Massachusetts, pp. 8.1/1–4, May 1990.Google Scholar
  8. [8]
    T. S. Fiez, G. Liang, and D. J. Allstot, “Switched-Current Circuit Design Issues”, IEEE J. Solid-State Circuits, Vol. 26, No. 3, pp. 192–202, Mar. 1991.CrossRefGoogle Scholar
  9. [9]
    Y. L. Cheung, and A. Buchwald, “A Sampled-Data Switched-Current Analog 16-Tap FIR Filter with Digitally Programmable Coefficients in 0.81..tm CMOS”, Proc. of Int. Solid-State Circ. Conf, San Francisco, California, pp. 54–55, 429, Feb. 1997, IEEE.Google Scholar
  10. [10]
    K. Bult, and G. Geelen, “An inherently linear and compact MOST-only current division technique”, IEEE J. Solid State Circ., Vol. 27, pp. 1730–1735, Dec. 1992.CrossRefGoogle Scholar
  11. [11]
    F. A. Farag, C. Galup-Montoro, and M. C. Schneider, “A Programmable Low-Voltage Switched-Current FIR Filter”, Proc. of 1999 Int. Symp. Circuits and Systems, Orlando, Florida, Vol. 2, pp. 472–475, May 1999, IEEE.Google Scholar
  12. [12]
    T. S. Fiez, and D. J. Allstot, “CMOS Switched-Current Ladder Filters”, IEEE J. Solid-State Circuits, Vol. 25, No. 6, pp. 1360–1367, Dec. 1990.CrossRefGoogle Scholar
  13. [13]
    A. C. M. de Queiroz, and P. R. M. Pinheiro, “Exact Design of Switched-Current Ladder Filters”, Proc. of Int. Symp. Circuits And Systems (ISCAS), San Diego, California, pp. 855–858, May 1992, IEEE.Google Scholar
  14. [14]
    N. C. Battersby, and C. Toumazou, “A 5th Order Bilinear Elliptic Switched-Current Filter”, Proc. of Custom Int. Circ. Conf, San Diego, California, pp. 6.3/1–4, May 1993.Google Scholar
  15. [15]
    N. C. Battersby, and C. Toumazou, “Class AB Switched-Current Memory for Analogue Sampled-Data Systems”, Electron. Lett., Vol. 27, No. 10, pp. 873–875, May 1991.Google Scholar
  16. [16]
    H. Träff, and S. Eriksson, “Class A and AB Compact Switched-Current Memory Circuits”, Electron. Lett., Vol. 29, No. 16, pp. 1454–1455, Aug. 1993.CrossRefGoogle Scholar
  17. [17]
    N. C. Battersby, and C. Toumazou, “Towards High Frequency Switched-Current Filters in CMOS and GaAs”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Chicago, Illinois, pp. 1239–1242, May 1993, IEEE.Google Scholar
  18. [18]
    S. Xiao, and C. Toumazou, “Second Generation Single and Two-Step GaAs Switched-Current Cells”, Electron. Lett., Vol. 30, No. 9, pp. 681–683, Apr. 1994.CrossRefGoogle Scholar
  19. [19]
    J. B. Hughes, and K. W. Moulding, “An 8MHz, 80Ms/s Switched-Current Filter”, Proc. of IEEE Int. Solid-State Circ. Conf., San Francisco, California, pp. 60–61, Feb. 1994, IEEE.Google Scholar
  20. [20]
    J. B. Hughes, and K. W. Moulding, “A Switched-Current Double Sampling Bilinear Z-Transform Filter Technique”, Proc. of Int. Symp. Circuits And Systems (ISCAS), London, UK, pp. 5.293–5. 296, May 1994, IEEE.Google Scholar
  21. [21]
    A. C. M. de Queiroz, and P, M. Pinheiro, “Switched-Current Ladder Band-Pass Filters”, Proc. of Int. Symp. Circuits And Systems (ISCAS), London, UK, pp. 5.3095. 312, May 1994, IEEE.Google Scholar
  22. [22]
    T. S. Fiez, B. Lee, and D. J. Allstot, “CMOS Switched-Current Biquadratic Filters”, Proc. of Mt. Symp. Circuits And Systems (ISCAS), New Orleans, Louisiana, pp. 23002303, May 1990, IEEE.Google Scholar
  23. [23]
    J. B. Hughes, I. C. Macbeth, and D. M. Patullo, “Switched-Current System Cells”, Proc. of Int. Symp. Circuits And Systems (ISCAS), New Orleans, Louisiana, pp. 303306, May 1990, IEEE.Google Scholar
  24. [24]
    J. B. Hughes, I. C. Macbeth, and D. M. Patullo, “Second Generation Switched-Current Signal Processing”, Proc. of Int. Symp. Circuits And Systems (ISCAS), New Orleans, Louisiana, pp. 2805–2808, May 1990, IEEE.Google Scholar
  25. [25]
    A. G. Begisi, T. S. Fiez, and D. J. Allstot, “Digitally-Programmable Switched-Current Filters”, Proc. of Mt. Symp. Circuits And Systems (ISCAS), New Orleans, Louisiana, pp. 3178–3181, May 1990, IEEE.Google Scholar
  26. [26]
    Y. Ohuchi, T. Inoue, and H. Fujino, “A Design of Switched-Current Auto-Tuning Filter and its Analysis”, IEICE Trans. Fundamentals, Vol. E78-A, No. 10, pp. 13501354, Oct. 1995.Google Scholar
  27. [27]
    A. Fettweis, “Digital Filter Structures Related to Classical Filter Networks”, Arch. Elektr. Übertragungstech., Vol. 25, No. 2, pp. 79–89, Feb. 1971.Google Scholar
  28. [28]
    A. Fettweis, “Wave Digital Filters: Theory and Practice”, IEEE Proceedings, Vol. 74, No. 2, pp. 270–327, Feb. 1986.CrossRefGoogle Scholar
  29. [29]
    A. Rueda, A. Yúfera, J. L. Huertas, “Wave analogue filters using switched-current techniques”, Electron. Lett., 1991, Vol. 27, No. 16, pp. 1482–1483, Aug. 1991.Google Scholar
  30. [30]
    A. Yúfera, A. Rueda, J. L. Huertas, “A Methodology for Programmable Switched-Current Filters Design”, Proc. of European Conf. Circuit Theory and Design, Davos, Switzerland, pp. 317–322, Aug. 1993, Elsevier.Google Scholar
  31. [31]
    A. Yúfera, A. Rueda, and J. L. Huertas, “Programmable Switched-Current Wave Analog Filters”, IEEEJ. Solid-State Circ., Vol. 29, No. 8, pp. 927–935, Aug. 1994.CrossRefGoogle Scholar
  32. [32]
    J. D. Lancaster, B. M. Al-Hashimi, and M. Moniri, “Efficient SI Wave Elliptic Filters based on Direct and Inverse Bruton Transformations”, IEE Proc. Pt. G., Vol. 146, No. 5, pp. 235–241, Oct. 1999.Google Scholar
  33. [33]
    S. Wang, and M. O. Ahmad, “A new Design of Switched-Current IIR Filters”, Proceedings of 1995 Canadian Conf. on Electrical and Computer Eng., Montreal, Que., Canada, Vol. 1, pp. 461–464, Sept. 1995.Google Scholar
  34. [34]
    M. O Ahmad, and S. Wang, “A Novel Fully Programmable Switched-Current IIR Filter”, Proc. of Custom Int. Circ. Conf, Santa Clara, California, pp. 12.4/1–4, May 1997.Google Scholar
  35. [35]
    W. Ping, and J. E. Franca, “Switched-Current Multirate Filtering”, Proc. of Int. Symp. Circuits And Systems (ISCAS), London, UK, pp. 5.321–5. 324, May 1994, IEEE.Google Scholar
  36. [36]
    M. Helfenstein, J. E. Franca, and G. S. Moschytz, “Design Techniques for HDTV Switched-Current Decimators”, Proceedings of ISCAS 96, Atlanta, Georgia, Vol. 1, pp. 195–198, May 1996, IEEE.Google Scholar
  37. [37]
    C. K. Tse, and K. C. Chun, “Design of a Switched-Current Median Filter”, IEEE Trans. on CAS-II, Vol. 42, No. 5, pp. 356–359, May 1995.Google Scholar
  38. [38]
    G. W. Roberts, and A. S. Sedra, “Synthesizing Switched-Current Filters By Transposing the SFG of Switched-Capacitor Filter Circuits”, IEEE Trans. Circuits Syst., Vol. 38, No. 3, pp. 337–340, Mar. 1991.CrossRefGoogle Scholar
  39. [39]
    A. C. M. de Queiroz, P. R. M. Pinheiro, and L. P. Calôba, “Systematic Nodal Analysis of Switched-Current Filters”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Singapore, pp. 1801–1804, June 1991, IEEE.Google Scholar
  40. [40]
    A. C. M. de Queiroz, P. R. M. Pinheiro, and L. P. Calôba, “Nodal Analysis of Switched-Current Filters”, IEEE Trans. Circuits Syst.-II, Vol. 40, No. 1, pp. 10–18, Jan. 1993.MATHCrossRefGoogle Scholar
  41. [41]
    E. M. Schneider, and T. S. Fiez, “Simulation of Switched-Current Systems”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Chicago, Illinois, pp. 1420–1423, May 1993, IEEE.Google Scholar
  42. [42]
    J. A. Barby, “Switched-Current Filter Models for Frequency Analysis in the Continuous-Time Domain”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Chicago, Illinois, pp. 1427–1430, May 1993, IEEE.Google Scholar
  43. [43]
    Z. O. Shang, and J. I. Sewell, “Development of Efficient Switched Network and Mixed-Mode Simulators”, IEE Proc. Pt. G., Vol. 145, No. 1, pp. 24–34, Feb. 1998.Google Scholar
  44. [44]
    A. C. M. de Queiroz, and P. R. M. Pinheiro, “Switching Sequence Effects in Switched-Current Filters”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Chicago, Illinois, pp. 982–985, May 1993, IEEE.Google Scholar
  45. [45]
    M. Helfenstein, A. Murait, and G. S. Moschytz, “Direct Analysis of Multiphase Switched-Current Networks using Signal-Flowgraphs”, Proc. ofInt. Symp. Circuits And Systems (ISCAS), Seattle, Washington, pp. 1476–1479, May 1995, IEEE.Google Scholar
  46. [46]
    M. Helfenstein, Analysis and Design of Switched-Current Networks, Series in Microelectronics, Vol. 70, Hartung-Gorre Verlag Konstantz, 1997.Google Scholar
  47. [47]
    M. Helfenstein, A. Murait, and G. S. Moschytz, “Direct Analysis and Synthesis of Multiphase Switched-Current Networks using Signal-Flow Graphs”, Int. Journal of Circuit Theory and Applications, Vol. 26, No. 3, pp. 253–280, May-June 1998.Google Scholar
  48. [48]
    A. E. J. Ng, and J. I. Sewell, “Ladder Decompositions for Wideband SI Filter Applications”, IEE Proc. Pt. G., Vol. 145, No. 5, pp. 306–313, Oct. 1998.Google Scholar
  49. [49]
    A. E. J. Ng, and J. I. Sewell, “N-path and Pseudo-N-Path Cells for Switched-Current Signal Processing”, IEEE Trans. on CAS-II, Vol. 46, No. 9, pp. 1148–1160, Sept. 1999.Google Scholar
  50. [50]
    A. E. J. Ng, and J. I. Sewell, “Ladder Derived Switched-Current Decimators and Interpolators”, IEEE Trans. on CAS-II, Vol. 46, No. 9, pp. 1161–1170, Sept. 1999.Google Scholar
  51. [51]
    A. E. J. Ng, and J. I. Sewell, “Feasible Designs for High Order Switched-Current Filters”, IEE Proc. Pt. G., Vol. 145, No. 5, pp. 297–305, Oct. 1998.CrossRefGoogle Scholar
  52. [52]
    P. Deval, G. Wegmann, and J. Robert, “CMOS Pipelined AID Convertor Using Current Divider”, Electron. Lett., Vol. 25, No. 20, pp. 1341–1342, Sept. 1989.CrossRefGoogle Scholar
  53. [53]
    D. G. Nairn, and C. A. T. Salama, “Ratio-Independent Current-Mode Algorithmic Analog-To-Digital Converters”, Proceedings of ISCAS 89, Portland, Oregon, pp. 250253, May 1989, IEEE.Google Scholar
  54. [54]
    J. Robert, P. Deval, and G. Wegmann, “Novel CMOS Pipelined A/D Convertor Architecture Using Current Mirrors”, Electron. Lett., Vol. 25, No. 11, pp. 691–692, May 1989.CrossRefGoogle Scholar
  55. [55]
    N. Tan, B. Jonsson, and S. Eriksson, “3.3V 1 Ibit Delta-Sigma Modulator using First-Generation SI Circuits”, Electron. Leu., Vol. 30, No. 22, pp. 1819–1821, Oct. 1994.CrossRefGoogle Scholar
  56. [56]
    B. E. Jonsson, and H. Tenhunen, “A Low-Voltage, 10-b Switched-Current ADC with 20 MHz Input Bandwidth”, Electron. Lett., Vol. 34, No. 20, pp. 1904–1905, Oct. 1998.CrossRefGoogle Scholar
  57. [57]
    B. E. Jonsson, and H. Tenhunen, “A Low-Voltage 32MS/s Parallel Pipelined Switched-Current ADC”, Electron. Lett., Vol. 34, No. 20, pp. 1906–1907, Oct. 1998.CrossRefGoogle Scholar
  58. [58]
    P. Real, D. H. Robertson, and C. W. Mangelsdorf, “A Wideband 10-b 20-Ms/s Pipelined ADC Using Current-Mode Signals”, IEEE J. Solid-State Circuits., Vol. 26, No. 8, pp. 1103–1109, Aug. 1991.CrossRefGoogle Scholar
  59. [59]
    M. Bracey, W. Redman-White, J. Richardson, and J. B. Hughes, “A Full Nyquist 15 MS/s 8-bit Differential Switched-Current A/D Converter”, Proceedings of ESSCIRC 95, Lille, France, pp. 146–149, Sept. 1995.Google Scholar
  60. [60]
    C.-Y. Wu, C.-C. Chen, and J.-J. Cho, “A CMOS Transistor-Only 8-b 4.5Ms/s Pipelined Analog-to-Digital Converter using Fully-Differential Current-Mode Circuit Techniques”, IEEE J Solid-State Circuits., Vol. 30, No. 5, pp. 522–532, May. 1995.CrossRefGoogle Scholar
  61. [61]
    M. Bracey, W. Redman-White, J. B. Hughes, and J. Richardson, “A 70 MS/s 8-bit Differential Switched-Current CMOS A/D Converter Using Parallel Interleaved Pipelines”, Proceedings of 1995 IEEE Region 10 International Conference on Microelectronics and VLSI, Hong Kong, pp. 143–146, Nov. 1995.Google Scholar
  62. [62]
    Y. Sugimoto, and T. Iida, “A Low-Voltage, High-Speed and Low-Power Full Current-Mode Video-rate CMOS A/D Converter”, Proceedings of ESSCIRC 97, Southampton, UK, pp. 392–395, Sept. 1997.Google Scholar
  63. [63]
    D. G. Naim, and C. A. T. Salama, “Algorithmic Analog/Digital Convertor Based on Current Mirrors”, Electron. Lett., Vol. 24, No. 8, pp. 471–472, Apr. 1988.CrossRefGoogle Scholar
  64. [64]
    P. Deval, J. Robert, and M. J. Declercq, “A 14-bit CMOS A/D Converter Based on Dynamic Current Memories”, Proc. of Custom Int. Circ. Conf, San Diego, California, pp. 24.2/1–4, May 1991.Google Scholar
  65. [65]
    S.-W. Kim, and S.-W. Kim, “Current-Mode Cyclic ADC for Low-Power and High-Speed Applications”, Electron. Lett., Vol. 27, No. 10, pp. 818–820, May 1991.Google Scholar
  66. [66]
    M. Kondo, H. Onodera, and K. Tamaru, “A Current-Mode Cyclic A/D Converter with Submicron Processes”, IEICE Trans. Fund. El. Comm. And Comp. Sci., Vol. E80-A, No. 2, pp. 360–364, Feb. 1997.Google Scholar
  67. [67]
    L. Zhang, T. Sculley, and T. Fiez, “A 12 Bit, 2V Current-Mode Pipelined A/D Converter using a Digital CMOS Process”, Proceedings of ISCAS 94, London, UK, pp. 5.369–5. 372, May 1994, IEEE.Google Scholar
  68. [68]
    M. Gustaysson, Analog Interfaces in a Digital CMOS Process, Licentiate Thesis No. 662, Linköping University, Sweden, Dec. 1997.Google Scholar
  69. [69]
    M. Bracey, W. Redman-White, J. Richardson, and J. B. Hughes, “A Full Nyquist 15 MS/s 8-b Differential Switched-Current A/D Converter”, IEEE J. Solid-State Circuits., Vol. 31, No. 7, pp. 945–951, July 1996.CrossRefGoogle Scholar
  70. [70]
    B. Ginetti, P. G. A. Jespers, and A. Vandemeulebroecke, “A CMOS 13-b Cyclic RSD A/D Converter”, IEEE J. Solid State Circ., Vol. 27, No. 7, pp. 957–964, July 1994.CrossRefGoogle Scholar
  71. [71]
    D. Macq, and P. G. A. Jespers, “A 10-bit Pipelined Switched-Current A/D Converter”, IEEE J. Solid-State Circuits., Vol. 29, No. 8, pp. 967–971, Aug. 1994.CrossRefGoogle Scholar
  72. [72]
    R. C. Hui, and H. C. Luong, “A CMOS Current-Mode Pipeline ADC using Zero-Voltage Sampling Technique”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Monterey, CA., Vol. 1, pp. 9–12, May 1998, IEEE.Google Scholar
  73. [73]
    J.-S. Wang, and C.-L. Wey, “A 12-b, 100ns/b, 1.9mW Switched-Current Cyclic A/D Converter”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Monterey, CA., Vol. 1, pp. 416–419, May 1998, IEEE.Google Scholar
  74. [74]
    J.-S. Wang, and C.-L. Wey, “A 12-bit 100ns/bit 1.9-mW CMOS Switched-Current Cyclic A/D Converter”, IEEE Trans. on CAS-II, Vol. 46, No. 5, pp. 507–516, May 1999.Google Scholar
  75. [75]
    J. P. A. Carreira, C. Dupuy, and J. E. Franca, “A Compact Three-Step Pipelined CMOS Current-Mode A/D Converter”, Proceedings of ISCAS 97, Hong Kong, Vol. 1, pp. 465–468, June 1997, IEEE.Google Scholar
  76. [76]
    C.-C. Cheng, and C.-Y. Wu, “Design Techniques for 1.5-V Low-Power CMOS Current-Mode Cyclic Analog-to-Digital Converters”, IEEE Trans. Circuits Syst.-II, Vol. 45, No. 1, pp. 28–40, Jan. 1998.CrossRefGoogle Scholar
  77. [77]
    W. R. Krenik, R. K. Hester, R. D. DeGroat, “Current-Mode Flash A/D Conversion Based On Current-Splitting Techniques”, Proceedings of ISCAS 92, San Diego, California, pp. 585–588, May 1992, IEEE.Google Scholar
  78. [78]
    H. Hasegawa, M. Yotsuyanagi, M. Yamaguchi, and K. Sone, “A 1.5 V Video-Speed Current-Mode Current Tree A/D Converter”, Proceedings of IEEE Symp. VLSI Circ., Honolulu, Hawaii, pp. 17–18, June 1994, IEEE.Google Scholar
  79. [79]
    A. Cable, and R. Harjani, “A 6-Bit 50MHz Current-Subtracting Two Step Flash Converter”, Proceedings of ISCAS 94, London, UK, pp. 5.465–5. 468, May 1994, IEEE.Google Scholar
  80. [80]
    J. P. Oliveira, J. Vital, and J. E. Franca, “A Digitally Calibrated Current-Mode Two-Step Flash A/D Converter”, Proceedings of ISCAS 96, Atlanta, Georgia, Vol. 1, pp. 199–202, May 1996, IEEE.Google Scholar
  81. [81]
    C. Hammerschmied, and Q. Huang, “Design and Implementation of an Untrimmed MOSFET-Only, 10-Bit A/D Converter with -79-dB THD”, IEEE J. Solid-State Circuits., Vol. 33, No. 8, pp. 1148–1157, Aug. 1998.CrossRefGoogle Scholar
  82. [82]
    M. P. Flynn, and D. J. Allstot, “CMOS Folding A/D Converters with Current-Mode Interpolation”, IEEE J. Solid-State Circuits., Vol. 31, No. 9, pp. 1248–1257, Sept. 1996.CrossRefGoogle Scholar
  83. [83]
    J. C. Candy, and G. C. Ternes (Eds.): Oversampling Delta-Sigma Data Converters: Theory, Design and Simulation, IEEE Press, 1992.Google Scholar
  84. [84]
    S. R. Norsworthy, R. Schreier, and G. C. Ternes (Eds.): Delta-Sigma Data Converters: Theory, Design and Simulation, IEEE Press, 1997.Google Scholar
  85. [85]
    N. Tan, Switched-Current Design and Implementation of Oversampling A/D Converters, Kluwer, 1997.Google Scholar
  86. [86]
    B. Jonsson, and N. Tan, “Clock-Feedthrough Compensated First-Generation SI Circuits and Systems”, Analog Integrated Circuits and Signal Processing, Vol. 12, No. 4, pp. 201–210, Apr. 1997.CrossRefGoogle Scholar
  87. [87]
    N. Tan, “Switched-Current Delta-Sigma A/D Converters”, Analog Integrated Circuits and Signal Processing, Vol. 9, No. 1, pp. 7–24, Jan. 1996.CrossRefGoogle Scholar
  88. [88]
    N. Moeneclaey, and A. Kaiser, “Design Techniques for High-Resolution CurrentMode Sigma-Delta Modulators”, IEEEJ. Solid-State Circ., Vol. 32, No. 7, pp. 953958, July 1997.Google Scholar
  89. [89]
    S. J. Daubert, and D. Vallancourt, “A Transistor-Only Current-Mode EA Modulator”, Proc. of Custom Int. Circ. Conf, San Diego, California, pp. 24.3/1–4, May 1991.Google Scholar
  90. [90]
    P. J. Crawley, and G. W. Roberts, “Switched-Current Sigma-Delta Modulation for A/D Conversion”, Proc. of lin. Symp. Circuits And Systems (ISCAS), San Diego, California, pp. 1320–1323, May 1992, IEEE.Google Scholar
  91. [91]
    M. Bracey, W. Redman-White, and J. B. Hughes, “A Switched-Current Sigma Delta Converter for Direct Photodiode Interfacing”, Proc. of Int. Symp. Circuits And Systems (ISCAS), London, UK, pp. 4.287–4. 290, May 1994, IEEE.Google Scholar
  92. [92]
    S. Lindfors, K. Halonen, and J. Riihiaho “A Current Mode EA-Modulator Based on the S2I Error Compensation Technique”, Proceedings of ECCTD 95, pp. 517–520, 1995.Google Scholar
  93. [93]
    J. Nedved, J. Vanneuville, D. Gevaert, and J. Sevenhans, “A Transistor-Only Switched Current Sigma-Delta A/D Converter for a CMOS Speech CODEC”, IEEE J. Solid-State Circ, Vol. 30, No. 7, pp. 819–822, July 1995.CrossRefGoogle Scholar
  94. [94]
    N. Tan, and S. Eriksson, “A Low-Voltage Switched-Current Delta-Sigma Modulator”, IEEE.1 Solid-State Circ., Vol. 30, No. 5, pp. 599–603, May 1995.CrossRefGoogle Scholar
  95. [95]
    N. Tan, “Fourth-Order SI Delta-Sigma Modulators for High-Frequency Applications”, Electron. Lett., Vol. 31, No. 5, pp. 333–334, Mar. 1995.CrossRefGoogle Scholar
  96. [96]
    S. V. Pattamatta, P. Manapragada, V. Dalal, and R. Schreier, “A Switched-Current Bandpass Delta-Sigma Modulator”, Proc. of Int. Symp. Circuits And Systems (ISCAS), London, UK, pp. 5.477–5. 480, May 1994, IEEE.Google Scholar
  97. [97]
    J. M. de la Rosa, B. Perez-Verdu, F. Medeiro, and A. Rodriguez-Vazquez, “CMOS Fully-Differential Bandpass Sigma Delta Modulator using Switched-Current Circuits”, Electron. Lett., Vol. 32, No. 3, pp. 156–157, Feb. 1996.CrossRefGoogle Scholar
  98. [98]
    J. B. Silva, C. A. Lerne, and J. E. Franca, “A Fully-Differential, Self-Calibrated Switched-Current Delta Sigma Modulator”, Proceedings of IEEE Midwest Symp. Circ. Syst., Ames, Iowa, Vol. 2, pp. 1050–1053, Aug. 1996, IEEE.Google Scholar
  99. [99]
    P. Simek, and V. Musil, “BIST for SI Sigma-Delta Analogue Front End”, Proc. ofInt. Symp. Circuits And Systems (ISCAS), Hong Kong, Vol. 4, pp. 2729–2732, June 1997, IEEE.Google Scholar
  100. [100]
    N. Tan, G. Amozandeh, A. Olson, and H. Stenström, “Current-Scaling Technique for High Dynamic Range Switched-Current Delta-Sigma Modulators”, Electron. Lett., Vol. 32, No. 15, pp. 1331–1332, July 1996.CrossRefGoogle Scholar
  101. [101]
    L. Quiquerez, and A. Kaiser, “Advanced Architectures for Current Memory SigmaDelta Modulators”, Proc. of Int. Symp. Circuits And Systems (ISCAS), Hong Kong, Vol. 1, pp. 473–476, June 1997, IEEE.Google Scholar
  102. [102]
    I. H. H. Jorgensen, and G. Bogason, “Optimization and Design of a Low Power Switched Current A/D- Sigma Delta -Modulator for Voice Band Applications”, Analog Integrated Circuits and Signal Processing, Vol. 17, No. 3, pp. 221–247, Nov. 1998.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Bengt E. Jonsson
    • 1
  1. 1.Ericsson Radio Systems ABStockholmSweden

Personalised recommendations