Advertisement

Disorders of Thermoregulation

  • Michael H. Entrup
  • Sana Ata

Abstract

Mammals regulate body temperature by regulating heat content and distribution (1). To maintain a constant heat content, heat gain or metabolic heat production must equal heat loss. When heat gain or metabolic heat production exceeds heat loss, the total heat content of the body increases, resulting in an increase in mean body temperature. Conversely, the mean body temperature decreases when heat loss exceeds heat gain or metabolic heat production.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Webb P. The physiology of heat regulation. Am J Physiol 1995; 268: R838–50.PubMedGoogle Scholar
  2. 2.
    Ereth Mil, Lennon RL, Sessler DI. Limited heat transfer between thermal compartments during rewarming in vasoconstricted patients. Aviat Space Environ Med 1992; 63: 1065–9.Google Scholar
  3. 3.
    Kurz A, Sessler DI, Narzt E, Lenhardt R, Lackner F. Morphometric influences on intraoperative core temperature changes. Anesth Analg 1995;80–562–7.Google Scholar
  4. 4.
    Kurz A, Sessler DI, Birnbauer F, Illievich UM, Spiss CK. Thermoregulatory vasoconstriction impairs active core cooling. Anesthesiology 1995; 82: 870–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Plattner O, Ikeda T, Sessler DI, Christensen R, Turakhia M. Postanesthetic vasoconstriction slows peripheral-to-core transfer of cutaneous heat, thereby isolating the core thermal compartment. Anesth Analg 1997; 85: 899–906.PubMedGoogle Scholar
  6. 6.
    Burton AC. Human calorimety: the average temperature of the tissues of the body. J Nut 1935; 9: 261–80.Google Scholar
  7. 7.
    Matsukawa T, Sessler DI, Sessler AM, Schroeder M, Ozaki M, Kurz A, Cheng C. Heat flow and distribution during induction of general anesthesia. Anesthesiology 1995; 82: 662–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Kurz A, Sessler DI, Christensen R, Dechert M. Heat balance and distribution during the core-temperature plateau in anesthetized humans. Anesthesiology 1995; 83: 491–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Sessler DI, McGuire J, Moayeri A, Hynson J. Isoflurane-induced vasodilation minimally increases cutaneous heat loss. Anesthesiology 1991; 74: 226–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Matsukawa T, Sessler DI, Christensen R, Ozaki M, Schroeder M. Heat flow and distribution during epidural anesthesia. Anesthesiology 1995; 83: 961–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Hynson JM, Sessler DI, Glosten B, McGuire J. Thermal balance and tremor patterns during epidural anesthesia. Anesthesiology 1991; 74: 680–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Emerick TH, Ozaki M, Sessler DI, Walters K, Schroeder M. Epidural anesthesia increases apparent leg temperature and decreases the shivering threshold. Anesthesiology 1994; 81: 28998.CrossRefGoogle Scholar
  13. 13.
    Glosten B, Hynson J, Sessler DI, McGuire J. Preanesthetic skin-surface warming reduces redistribution hypothermia caused by epidural block. Anesth Analg 1993; 77: 488–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Kurz A, Sessler DI, Schroeder M, Kurz M. Thermoregulatory response thresholds during spinal anesthesia. Anesth Analg 1993; 77: 721–6.PubMedGoogle Scholar
  15. 15.
    Guyton AC, Hall JE. Energetics, metabolic rate, and regulation of body temperature. In: Guyton AC, Hall JE. Human Physiology and Mechanisms of Disease. 6th ed. Philadelphia: WB Saunders Company, 1997: 571–82.Google Scholar
  16. 16.
    Rawson RO, Quick KP. Evidence of deep body thermoreceptor response to intra-abdominal heating of the ewe. J Appl Physiol 1970; 28: 813–20.PubMedGoogle Scholar
  17. 17.
    Simon E. Temperature regulation: the spinal cord as a site of extrahypothalamic thermoregulatory function. Rev Physiol Biochem Pharmacol 1974; 71: 1–76.PubMedCrossRefGoogle Scholar
  18. 18.
    Bruck K. Thermoregulation: central mechanisms and neural processes. In: Sinclair JC, ed. Temperature Regulation and Energy Metabolism in the Newborn. NY: Grune & Stratton, 1978.Google Scholar
  19. 19.
    Simon E, Pierau FK, Taylor DC. Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev 1986; 66: 235–300.PubMedGoogle Scholar
  20. 20.
    Lopez M, Sessler DI, Walter K, Emerick T, Ozaki M. Rate and gender dependence of the sweating, vasoconstriction and shivering thresholds in humans. Anesthesiology 1994; 80: 780–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Dawkins, MJ, Scopes JW. Non-shivering thermogenesis and brown adipose tissue in the human new-born infant. Nature 1965; 206: 201–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Jessen K. An assessment of human regulatory nonshivering thermogenesis. Acta Anaesthesiol Scand 1980; 24: 138–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Hynson JM, Sessler DI, Moayeri A, McGuire J. Absence of nonshivering thermogenesis in anesthetized adult humans. Anesthesiology 1993; 79: 695–703.PubMedCrossRefGoogle Scholar
  24. 24.
    Nedergaard J, Lindberg O. The brown fat cell. Int Rev Cytol 1982; 74: 187–286.PubMedCrossRefGoogle Scholar
  25. 25.
    Klaus S, Casteilla L, Bouillaud F, Ricquier D. The uncoupling protein UCP: a membranous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int J Biochem 1991; 23: 791–801.PubMedCrossRefGoogle Scholar
  26. 26.
    Ricquier DL, Casteilla L, Bouillaud F. Molecular studies of the uncoupling protein. FASEB J 1991; 5: 2237–42.PubMedGoogle Scholar
  27. 27.
    Scarpace PJ, Matheny M, Borst S, Tümer N. Thermoregulation with age: role of thermogenesis and uncoupling protein expression in brown adipose tissue. Proc Soc Exp Biol Med 1994; 205: 154–61.PubMedGoogle Scholar
  28. 28.
    Ohlson KB, Mohell N, Cannon B, Lindahl SG, Nedergaard J. Thermogenesis in brown adipocytes is inhibited by volatile anesthetic agents. A factor contributing to hypothermia in infants ? Anesthesiology 1994; 81: 176–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Dicker A, Ohlson KBE, Johnson L, Cannon B, Lindahl SGE, Nedergaard J. Halothane selectively inhibits nonshivering thermogenesis. Possible implications for thermoregulation during anesthesia of infants. Anesthesiology 1995; 82: 491–501.PubMedCrossRefGoogle Scholar
  30. 30.
    Plattner O, Semsroth M, Sessler DI, Papousek A, Klasen C, Wagner O. Lack of nonshivering thermogenesis in infants anesthetized with fentanyl and propofol. Anesthesiology 1997; 86: 772–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Xiong J, Kurz A, Sessler DI, Plattner O, Christensen R, Dechert M, Ikeda T. Isoflurane produces marked and nonlinear decreases in the vasoconstriction and shivering thresholds. Anesthesiology 1996; 85: 240–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Matsukawa T, Kurz A, Sessler DI, Bjorksten AR, Merrifield B, Cheng C. Propofol linearly reduces the vasoconstriction and shivering thresholds. Anesthesiology 1995; 82: 1169–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Annadata R, Sessler DI, Tayefeh F, Kurz A, Dechert M. Desflurane slightly increases the sweating threshold but produces marked nonlinear decreases in the vasoconstriction and shivering thresholds. Anesthesiology 1995; 83: 1205–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Talke P, Tayefeh F, Sessler DI, Jeffrey R, Noursalehi M, Richardson C. Dexamedetomidine does not alter the sweating threshold, but comparably and linearly decreases the vasoconstriction and shivering thresholds. Anesthesiology 1997; 87: 835–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Kurz, A, Go JC, Sessler DI, Kaer K, Larson M, Bjorksten AR. Alfentanil slightly increases the sweating threshold and markedly reduces the vasoconstriction and shivering thresholds. Anesthesiology 1995; 83: 293–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Passias TC, Mekjavic IB, Eiken O. The effect of 30% nitrous oxide on thermoregulatory responses in humans during hypothermia. Anesthesiology 1992; 76: 550–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Kurz A, Xiong J, Sessler DI, Dechert M, Noyes K, Belani K. Desflurane reduces the gain of thermoregulatory arteriovenous shunt vasoconstriction in humans. Anesthesiology 1995; 83: 1212–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Kurz A, Sessler DI, Annadata R, Dechert M, Christensen R, Bjorksten AR. Midazolam minimally impairs thermoregulatory control. Anesth Analg 1995; 81: 393–8.PubMedGoogle Scholar
  39. 39.
    Benzinger M. Tympanic thermometry in surgery and anesthesia. JAMA 1969; 209: 1207–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Mariak Z, Bondyra Z, Piekarska M. The temperature within the circle of Willis versus tympanic temperature in resting normothermic humans. Eur J Appl Physiol Occup Physiol 1993; 66: 5 1820.Google Scholar
  41. 41.
    Baker MA, Stocking RA, Meehan JR Thermal relationship between tympanic membrane and hypothalamus in conscious cat and monkey. J Appl Physiol 1972; 32: 739–42.PubMedGoogle Scholar
  42. 42.
    Shiraki K, Sagawa S, Tajima F, Yokota A, Hashimoto M, Brengelmann GL. Independence of brain and tympanic temperatures in an unanesthetized human. J Appl Physiol 1988; 65: 482–6.PubMedGoogle Scholar
  43. 43.
    Mariak Z, Lewko J, Luczaj J, Polocki B, White MD. The relationship between directly measured human cerebral and tympanic temperatures during changes in brain temperature. Eur J Appl Physiol Occup Physiol 1994; 69: 545–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Mellergard R Intracerebral temperature in neurosurgical patients: intracerebral temperature gradients and relationships to consciousness level. Surg Neural 1995;43:91–5.Google Scholar
  45. 45.
    Wass CT, Lanier WL, Hofer RE, Scheithauer BW, Andrews AG. Temperature changes of or = 1 degree C alter functional neurologic outcome an histopathology in a canine model of complete cerebral ischemia. Anesthesiology 1995; 83: 325–35.PubMedCrossRefGoogle Scholar
  46. 46.
    Dietrich WD, Busto R, Valdes I, Loor Y. Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 1990; 21: 1318–25.PubMedCrossRefGoogle Scholar
  47. 47.
    Cork RC, Vaughan RW, Humphrey LS. Precision and accuracy of intraoperative temperature monitoring. Anesth Analg 1983; 62: 211–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Bissonnette B, Sessler DI, LaFlamme R Intraoperative temperature monitoring sites in infants and children and the effect of inspired gas warming on esophageal temperature. Anesth Analg 1989; 69: 192–6.PubMedGoogle Scholar
  49. 49.
    Kaufman RD. Relationship between esophageal temperature gradient and heart and lung sounds heard by esophageal stethoscope. Anesth Analg 1987; 66: 1046–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Whitby JD, Dunkin LJ. Temperature differences in the oesophagus. Preliminary study. Br J Anaesth 1968; 40: 991–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Horrow JC, Rosenberg H. Does urinary catheter temperature reflect core temperature during cardiac surgery? Anesthesiology 1988; 69: 986–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Young CC, Sladen RN. Temperature monitoring. Int Anesthesiol Clin 1996; 34: 149–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Sessler DI. Temperature monitoring. In: Miller RD, ed. Anesthesia 5th ed. Philadelphia: Churchill Livingstone, 2000: 1367–89.Google Scholar
  54. 54.
    Brock-Utne JG. Temperature monitoring. In: Hypothermia in Trauma-Deliberate or Accidental. Special seminar 10th Annual Trauma Anesthesia and Critical Care Symposium and World Exposition. May 15–17, 1997, International Trauma Anesthesia and Critical Care Society.Google Scholar
  55. 55.
    Brull SJ, Cunningham AJ, Connelly NR, O’Connor TZ, Silverman DG. Liquid crystal skin thermometry: an accurate reflection of core temperature? Can J Anaesth 1993; 40: 375–81.PubMedCrossRefGoogle Scholar
  56. 56.
    Imamura M, Matsukawa T, Ozaki M, Sessler DI, Nishiyama T, Kumarzawa T. The accuracy and precision of four infrared aural canal thermometers during cardiac surgery. Acta Anaesthesiol Scand 1998; 42: 1222–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Marsh ML, Sessler DI. Failure of intraoperative liquid crystal temperature monitoring. Anesth Analg 1996; 82: 1102–4.PubMedGoogle Scholar
  58. 58.
    Vaughan MS, Vaughan RW, Cork RC. Postoperative hypothemria in adults: relationship of age, anesthesia, and shivering to rewarming. Anesth Analg 1981; 60: 746–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Slotman GJ, Jed EH, Burchard KW. Adverse effects of hypothermia in postoperative patients. Am J Surg 1985; 149: 495–501.PubMedCrossRefGoogle Scholar
  60. 60.
    Frank SM, Shir Y, Raja SN, Fleisher LA, Beattie C. Core hypothermia and skin-surface temperature gradients. Epidural versus general anesthesia and the effects of age. Anesthesiology 1994; 80: 502–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Luna GK, Maier RV, Pavlin EG, Anardi D, Copass MK, Oreskovich MR. Incidence and effect of hypothermia in seriously injured patients. J Trauma 1987; 27: 1014–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Jurkovich GJ, Greiser WB, Luterman A, Curren PW. Hypothermia in trauma victims: an ominous predictor of survival. J Trauma 1987; 27: 1019–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Clemmer TP, Fisher CJ Jr, Bone RC, Slotman GJ, Metz CA, Thomas FO. Hypothermia in the sepsis syndrome and clinical outcome. The Methylprednisolone Severe Sepsis Study Group. Crit Care Med 1992; 20: 1395–401.PubMedCrossRefGoogle Scholar
  64. 64.
    Williams GR, Spencer FC. The clinical use of hypothermia following cardiac arrest. Ann Surg 1958; 148: 462–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Fay T. Observations on prolonged human refrigeration. NY State J Med 1940; 40: 1351–4.Google Scholar
  66. 66.
    Lougheed WM, Sweet WH, White JC, Brewster WR. The use of hypothermia in surgical treatment of cerebral vascular lesions: a preliminary report. J Neurosurg 1955; 12: 240–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia: its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg 1950; 132: 849–66.PubMedCrossRefGoogle Scholar
  68. 68.
    Bigelow WG, Mustard WT, Evans JG. Some physiologic concepts of hypothermia and their application to cardiac surgery. J Thor Surg 1954; 28: 463–80.Google Scholar
  69. 69.
    Lazorthes G, Campan L. Moderate hypothermia in the treatment of head injuries. Clin Neurosurg 1964; 12: 293–9.PubMedGoogle Scholar
  70. 70.
    Hamby WB. Intracranial surgery for aneurysm: effect of hypothermia on survival. J Neurosurg 1963; 20: 41–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987; 7: 729–38.PubMedCrossRefGoogle Scholar
  72. 72.
    Minamisawa H, Nordstrom CH, Smith ML, Siesjo BK. The influence of mild body and brain hypothermia on ischemic brain damage. J Cereb Blood Flow Metab 1990; 10: 365–74.PubMedCrossRefGoogle Scholar
  73. 73.
    Busto R, Dietrich WD, Globus MY, Ginsberg MD. Postischemic moderate hypothermia inhibits CA 1 hippocampal ischemic neuronal injury. Neurosci Lett 1989; 101: 299–304.PubMedCrossRefGoogle Scholar
  74. 74.
    Sterz F, Safar P, Tisherman S, Radovsky A, Kuboyama K, Oku K. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs. Crit Care Med 1991; 19: 379–89.PubMedCrossRefGoogle Scholar
  75. 75.
    Weinrauch V, Safar P, Tisherman S, Kuboyama K, Radovsky A. Beneficial effect of mild hypothermia and detrimental effect of deep hypothermia after cardiac arrest in dogs. Stroke 1992; 23: 1454–62.PubMedCrossRefGoogle Scholar
  76. 76.
    Lennov Y, Steitz F, Safar P, Radovsky A, Oku K, Tisherman S, Stezoski SW. Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab 1990; 10: 57–70.CrossRefGoogle Scholar
  77. 77.
    Dietrich WD, Alonso 0, Busto, R, Globus MY, Ginsberg MD. Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol (Berl) 1994; 87: 250–8.CrossRefGoogle Scholar
  78. 78.
    Mansfield RT, Schiding JK, Hamilton RL, Kochanek PM. Effects of hypothermia on traumatic brain injury in immature rats. J Cereb Blood Flow Metab 1996; 16: 244–52.PubMedCrossRefGoogle Scholar
  79. 79.
    Yanamoto H, Nagata I, Nakahara I, Tohnai N, Zhang Z, Kikuchi H. Combination of intraischemic and postischemic hypothermia provides potent and persistent neuroprotection against temporary focal ischemia in rats. Stroke 1999; 30: 2720–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Huh PW, Belayev L, Zhao W, Koch S, Busto R, Ginsberg MD. Comparative neuroprotective efficacy of prolonged moderate intraischemic and postischemic hypothermia in focal cerebral ischemia. J Neurosurg 2000; 92: 91–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Sick TJ, Xu G, Perez-Pinzon MA. Mild hypothermia improves recovery of cortical extracellular potassium ion activity and excitability after middle cerebral artery occlusion in the rat. Stroke 1999; 30: 2416–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhao W, Alonso OF, Loor JY, Busto R, Ginsburg MD. Influence of early posttraumatic hypothermia therapy on local cerebral blood flow and glucose metabolism after fluid percussion brain injury. J Neurosurg 1999; 90: 510–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Wass CT, Lanier WL, Hofer RE, Scheithauer BW, Andrews AG. Temperature changes of> or = 1 degree C alter functional neurologic outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology 1995; 83: 325–35.PubMedCrossRefGoogle Scholar
  84. 84.
    Shiozaki T, Sugimoto H, Taneda M, Oda J, Tanaka H, Hiraide A, Shimazu T. Selection of severely head injured patients for mild hypothermia therapy. J Neurosurg 1998; 89: 206–11.PubMedCrossRefGoogle Scholar
  85. 85.
    Hindman BJ, Todd MM, Gelb AW, Loftus CM, Craen RA, Schubert A, Mahla ME, Tomer JC. Mild hypothermia as a protective therapy during intracranial aneurysm surgery: a randomized prospective pilot trial. Neurosurgery 1999; 44: 23–33.PubMedCrossRefGoogle Scholar
  86. 86.
    Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, Wisniewski SR, DeKosky ST. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 1997; 336: 540–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Tisherman SA, Rodriguez A, Safar P. Therapeutic hypothermia in traumatology. Surg Clin North Am 1999; 79: 1269–89.PubMedCrossRefGoogle Scholar
  88. 88.
    Reinert MM, Bullock R. Clinical trials in head injury. Neurol Res 1999; 21: 330–8.PubMedGoogle Scholar
  89. 89.
    Future directions for resuscitation research. International Resuscitation Research Conference 1994. Crit Care Med 1996; 24 (2 Suppl): 1–99.CrossRefGoogle Scholar
  90. 90.
    Kataoka K, Yanase H. Mild hypothermia-a revived countermeasure against ischemic neuronal damages. Neurosci Res 1998; 32: 103–17.PubMedCrossRefGoogle Scholar
  91. 91.
    Benumof J, Wahrenbrock EADependency of hypoxic pulmonary vasoconstriction on temperature. J Appl Physiol 1977; 42: 56–8.PubMedGoogle Scholar
  92. 92.
    Frank SM, Higgins MS, Breslow MJ, Fleisher LA, Gorman RB, Sitzmann JV, Raff H, Beattie C. The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia. A randomized clinical trial. Anesthesiology 1995; 82: 83–93.PubMedCrossRefGoogle Scholar
  93. 93.
    Boelhouwer RU, Bruining HA, Ong GL. Correlations of serum potassium fluctuations with body temperature after major surgery. Crit Care Med 1987; 15: 310–2.PubMedCrossRefGoogle Scholar
  94. 94.
    Carli F, Itiaba K. Effect of heat conservation during and after major abdominal surgery on muscle protein breakdown in elderly patients. Br J Anaesth 1986; 58: 502–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Heier T, Caldwell JE, Sharma ML, Gruenke LD, Miller RD. Mild intraoperative hypothermia does not change the pharmacodynamics (concentration-effect relationship) of vecuronium in humans. Anesth Analg 1994; 78: 973–7.PubMedGoogle Scholar
  96. 96.
    Heier T, Caldwell JE, Sessler DI, Miller RD. Mild intraoperative hypothermia increases duration of action and spontaneous recovery of vecuronium blockade during nitrous oxide-isoflurane anesthesia in humans. Anesthesiology 1991; 74: 815–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Leslie K, Sessler DI, Bjorksten AR, Moayeri A. Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg 1995; 80: 1007–14.PubMedGoogle Scholar
  98. 98.
    Rodriguez JL, Weissman C, Damask MC, Askanazi J, Hyman AI, Kinney JM. Physiologic requirements during rewarming: suppression of the shivering response. Crit Care Med 1983; 11: 490–7.PubMedGoogle Scholar
  99. 99.
    Bay J, Nunn JF, Prys-Roberts C. Factors influencing arterial PO2 during recovery from anaesthesia. Br J Anaesth 1968; 40: 398–407.PubMedCrossRefGoogle Scholar
  100. 100.
    Macintyre PE, Pavlin EG, Dwersteg JF. Effect of meperidine on oxygen consumption, carbon dioxide production and respiratory gas exchange in postanesthesia shivering. Anesth Analg 1987; 66: 751–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Frank SM, Beattie C, Christopherson R, Norris EJ, Perler BA, Williams GM, Gottlieb SO. Unintentional hypothermia is associated with postoperative myocardial ischemia. The Perioperative Ischemia Randomized Anesthesia Trial Study Group. Anesthesiology 1993; 78: 468–76.PubMedCrossRefGoogle Scholar
  102. 102.
    Frank SM, Fleisher LA, Breslow MJ, Higgins MS, Olson KF, Kelly S, Beattie C. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA 1997; 277: 1127–34.PubMedCrossRefGoogle Scholar
  103. 103.
    Frank SM, Fleisher LA, Olson KF, Gorman RB, Higgins MS, Breslow MJ, Sitzmann JV, Beattie C. Multivariate determinates of early postoperative oxygen consumption in elderly patients. Effects of shivering, body temperature, and gender. Anesthesiology 1995; 83: 241–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Orts A, Alcaraz C, Delaney KA, Goldfrank LR, Turndorf H, Purg MM. Bretylium tosylate and electrically induced cardiac arrhythmias during hypothermia in dogs. Am J Emerg Med 1992; 10: 311–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Kochar G, Kahn SE, Kotler MN. Bretylium tosylate and ventricular fibrillation in hypothermia. Ann Intern Med 1986; 105: 624.PubMedCrossRefGoogle Scholar
  106. 106.
    Kurz A, Sessler DI, Lenhardt R. Perioperative normothenmia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 1996; 334: 1209–15.PubMedCrossRefGoogle Scholar
  107. 107.
    van Oss CJ, Absolom DR, Moore LL, Park BH, Humbert JR. Effect of temperature on the chemotaxis, phagocytic engulfment, digestion and 02 consumption of human polymorphonuclear leukocytes. J Reticuloendothel Soc 1980; 27: 561–5.Google Scholar
  108. 108.
    Beilin B, Shavit Y, Razumovsky J, Wolloch Y, Zeidel A, Bessler H. Effects of mild perioperative hypothermia on cellular immune responses. Anesthesiology 1998; 89: 1133–40.PubMedCrossRefGoogle Scholar
  109. 109.
    Hopf HW, Hunt TK, West JM, Blomquist P, Goodson WH 3d, Jensen JA, Jonsson K, Paty PB, Rabkin JM, Upton RA, von Smitten K, Whitney JD. Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg 1997; 132: 997–1004.PubMedCrossRefGoogle Scholar
  110. 110.
    Allen DB, Maguire JJ, Mandavian M, Wicke C, Marcocci L, Scheuenstuhl H, Chang M, Le AX, Hopf HW, Hunt TK. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg 1997; 132: 991–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Greif R, Akca 0, Horn EP, Kurz A, Sessler DI. Supplemental perioperative oxygen to reduce the incidence of surgical wound infection. Outcomes Research Group. N Engl J Med 2000; 342: 161–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Akca O, Podolsky A, Eisenhuber E, Panzer O, Hetz H, Lampl K, Lackner FX, Whittmann K, Grabenwoeger F, Kurz A, Schultz AM, Negishi C, Sessler DI. Comparable postoperative pulmonary atelectasis in patients given 30% or 80% oxygen during and 2 hours after colon resection. Anesthesiology 1999; 91: 991–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Ikeda T, Tayefeh F, Sessler DI, Kurz A, Plattner 0, Petschnigg B, Hopf HW, West J. Local radiant heating increases subcutaneous oxygen tension. Am J Surg 1998; 175: 33–7.Google Scholar
  114. 114.
    Gubler KD, Gentilello LM, Hassantash SA, Maier RV. The impact of hypothermia on dilutional coagulopathy. J Trauma 1994; 36: 847–51.PubMedCrossRefGoogle Scholar
  115. 115.
    Schmied H, Kurz A, Sessler DI, Kozek S, Reiter A. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 1996; 347: 289–92.PubMedCrossRefGoogle Scholar
  116. 116.
    Bernabei AF, Levison MA, Bender JS. The effects of hypothermia and injury severity on blood loss during trauma laparotomy. J Trauma 1992; 33: 835–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Villalobos TJ, Adelson E, Riley PA Jr, Crosby WM. A cause of the thrombocytopenia and leukopenia that occur in dogs during deep hypothermia. J Clin Invest 1958; 37: 1–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Helmsworth JA, Stiles WJ, Elstun W. Leukopenic and thrombocytopenic effect of hypothermia in dogs. Proc Soc Exp Biol Med 1955; 90: 474–6.PubMedGoogle Scholar
  119. 119.
    Thomas R, Hesse! EA 2d, Harker LA, Sands MP, Dillard DH. Platelet function during and after deep surface hypothermia. J Surg Res 1981; 31: 314–8.Google Scholar
  120. 120.
    Valeri CR, Feingold It Cassidy G, Ragno G, Khuri S, Altschule MD. Hypothermia-induced reversible platelet dysfunction. Ann Surg 1987; 205: 175–81.Google Scholar
  121. 121.
    Reed RL 2d, Johnston TD, Hudson JD, Fischer RP. The disparity between hypothermic coagulopathy and clotting studies. J Trauma 1992; 33: 465–70.PubMedCrossRefGoogle Scholar
  122. 122.
    Rohrer MJ, Natale AM. Effect of hypothermia on the coagulation cascade. Crit Care Med 1992; 20: 1402–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Johnston TD, Chen Y, Reed RL 2d. Functional equivalence of hypothermia to specific clotting factor deficiencies. J Trauma 1994; 37: 413–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Watts DD, Trask A, Soeken K, Perdue P, Dols S, Kaufmann C. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma 1998; 44: 846–54.PubMedCrossRefGoogle Scholar
  125. 125.
    Ledingham IM, Mone JG. Treatment of accidental hypothermia: a prospective clinical study. Br Med J 1980; 280: 1102–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Gillen JP, Vogel MF, Holterman RK, Skiendzielewski JJ. Ventricular fibrillation during orotracheal intubation of hypothermic dogs. Ann Emerg Med 1986; 15: 412–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Mahajan RP, Grover VK, Sharma SL, Singh H. Intraocular pressure changes during muscular hyperactivity after general anesthesia. Anesthesiology 1987; 66: 419–21.PubMedCrossRefGoogle Scholar
  128. 128.
    Sladen RN. Temperature and ventilation after hypothermic cardiopulmonary bypass. Anesth Analg 1985; 64: 816–20.PubMedCrossRefGoogle Scholar
  129. 129.
    Sharkey A, Lipton JM, Murphy MT, Giesecke AH. Inhibition of postanesthetic shivering with radiant heat. Anesthesiology 1987; 66: 249–52.Google Scholar
  130. 130.
    Cheng C, Matsukawa T, Sessler DI, Ozaki M, Kurz A, Merrifield B, Lin H, Olofsson P. Increasing mean skin temperature linearly reduces the core temperature thresholds for vasoconstriction and shivering in humans. Anesthesiology 1995; 82: 1160–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Wang JJ, Ho ST, Lee SC, Liu YC. A comparison among nalbuphine, meperdine, and placebo for treating postanesthetic shivering. Anesth Analg 1999;88–686–9.Google Scholar
  132. 132.
    Alfonsi P, Sessler DI, DuManoir B, Levron JC, LeMoing JP, Chauvin M. The effects of meperidine and sufentanil on the shivering threshold in postoperative patients. Anesthesiology 1998; 89: 43–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Joris J, Banache M, Bonnet F, Sessler DI, Lamy M. Clonidine and ketanserin both are effective treatment for postanesthetic shivering. Anesthesiology 1993; 79: 532–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Kurz M, Belani KG, Sessler DI, Kurz A, Larson MD, Schroeder M, Blanchard D. Naloxone, meperdine and shivering. Anesthesiology 1993; 79: 1193–201.PubMedCrossRefGoogle Scholar
  135. 135.
    Horn EP, Standl T, Sessler DI, von Knobelsdorff G, Buchs C, Schultz am Esch J. Physostigmine prevents postanesthetic shivering as does meperidine or clonidine. Anesthesiology 1998; 88: 108–13.Google Scholar
  136. 136.
    Kizilirmak S, Karakas SE, Akca O, Ozkan T, Yavru A, Pembeci K, Sessler DI, Telci L. Magnesium sulfate stops postanesthetic shivering. Ann NY Acad Sci 1997, 813: 799–806.PubMedCrossRefGoogle Scholar
  137. 137.
    Brundin T, Wahren J. Influence of protein injection on human splanchnic and whole-body oxygen consumption, blood flow and blood temperature. Metabolism 1994; 43: 626–32.PubMedCrossRefGoogle Scholar
  138. 138.
    Brandin T, Wahren J. Effects of i.v. amino acids on human splanchnic and whole body oxygen consumption, blood flow, and blood temperatures. Am J Physiol 1994; 266: E396–402.Google Scholar
  139. 139.
    Sellden E, Brundin T, Wahren J. Augmented thermic effect of amino acids under general anaesthesia: a mechanism useful for prevention of anaesthesia-induced hypothermia. Clin Sci 1994; 86: 611–8.PubMedGoogle Scholar
  140. 140.
    Sellden E, Lindhahl SG. Postoperative nitrogen excretion after amino acid–induced thermogenesis under anesthesia. Anesth Analg 1998;87–641–6.Google Scholar
  141. 141.
    Sellden E, Lindahl SG. Amino acid-induced thermogenesis to prevent hypothermia during anesthesia is not associated with increased stress response. Anesth Analg 1998; 87: 637–40.PubMedGoogle Scholar
  142. 142.
    Bernard JM, Pinaud M, Souron R. Preoperative hypothermia prevention. Acta Anaesthesiol Scand 1987; 31: 521–3.PubMedCrossRefGoogle Scholar
  143. 143.
    Henneberg S, Eklund A, Joachimsson PO, Stjemstrom H, Wiklund L. Effects of a thermal ceiling on postoperative hypothermia. Acta Anaesthesiol Scand 1985; 29: 602–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Joachimsson PO, Hedstrand U, Tabow F, Hansson B. Prevention of intraoperative hypothermia during abdominal surgery. Acta Anaesthesiol Scand 1987; 31: 330–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Morris RH, Kumar A. The effect of warming blankets on maintenance of body temperature of the anesthetized, paralyzed adult patient. Anesthesiology 1972; 36: 408–11.PubMedCrossRefGoogle Scholar
  146. 146.
    Sessler DI, Maoyeri A. Skin-surface warming: heat flux and central temperature. Anesthesiology 1990; 73: 218–24.PubMedCrossRefGoogle Scholar
  147. 147.
    Cheney FW, Posner KL, Caplan RA, Gild WM. Burns from warming devices in anesthesia. A closed claims analysis. Anesthesiology 1994; 80: 806–10.PubMedCrossRefGoogle Scholar
  148. 148.
    Ralley FE, Ramsay JG, Wynands JE, Townsend GE, Whalley DG, DelliColli P. Effect of heated humidified gases on temperature drop after cardiopulmonary bypass. Anesth Analg 1984; 63: 1106–10.PubMedCrossRefGoogle Scholar
  149. 149.
    Fonkalsrud EW, Sanchez M, Higashijima I, Arima E. A comparative study of the effects of dry vs. humidified ventilation on canine lungs. Surgery 1975; 78: 373–80.PubMedGoogle Scholar
  150. 150.
    Presson RG Jr, Bezruczko AP, Hillier SC, McNiece WL. Evaluation of a new fluid warmer effective at low to moderate flow rates. Anesthesiology 1993; 78: 974–80.PubMedCrossRefGoogle Scholar
  151. 151.
    Fildes J, Sheaff C, Barrett J. Very hot intravenous fluid in the treatment of hypothermia. J Trauma 1993; 35: 683–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Fildes J, Fisher S, Sheaff CM, Barrett JA. Effects of short heat exposure on human red and white blood cells. J Trauma 1998; 45: 479–84.PubMedCrossRefGoogle Scholar
  153. 153.
    Bristow GK, Sessler DI, Giesbrecht GG. Leg temperature and heat content in humans during immersion hypothermia and rewarming. Aviat Space Environ Med 1994; 65: 220–6.PubMedGoogle Scholar
  154. 154.
    Daanen HA, Van de Linde FJ. Comparison of four noninvasive rewarming methods for mild hypothermia. Aviat Space Environ Med 1992; 63: 1070–6.PubMedGoogle Scholar
  155. 155.
    Vanggaard L, Eyolfson D, Xu X, Weseen G, Giesbrecht GG. Immersion of distal arms and legs in warm water (AVA rewarming) effectively rewanns mildly hypothermic humans. Aviat Space Environ Med 1999; 70: 1081–8.PubMedGoogle Scholar
  156. 156.
    Hynson JM, Sessler DI. Intraoperative warming therapies: a comparison of three devices. J Clin Anesth 1992; 4: 194–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Soreide E, Grahn DA, Brock-Utne JG, Rosen L. A non-invasive means to effectively restore normothermia in cold stressed individuals: a preliminary report. J Emerg Med 1999; 17: 725–30.PubMedCrossRefGoogle Scholar
  158. 158.
    Gratin D, Brock-Utne JG, Watenpaugh DE, Heller HC. Recovery from mild hypothermia can be accelerated by mechanically distending blood vessels in the hand. J Appl Physiol 1998; 85: 1643–8.Google Scholar
  159. 159.
    Gregory JS, Bergstein JM, Aprahamian C, Wittmann DH, Quebbeman EJ. Comparison of three methods of rewarming from hypothermia: advantages of extracorporeal blood warming. J Trauma 1991; 31: 1247–51.PubMedCrossRefGoogle Scholar
  160. 160.
    Walpoth BH, Walpoth-Aslan BN, Mettle HP, Radanov BP, Schroth G, Schaeffler L, Fischer AP, von Segesser L, Althaus U. Outcome of survivors of accidental deep hypothermia and circulatory arrest treated with extracorporeal blood warming. N Engl J Med 1997; 337: 1500–5.Google Scholar
  161. 161.
    Vretenar DF, Urschel JD, Parrott JC, Unruh HW. Cardiopulmonary bypass resuscitation for accidental hypothermia. Ann Thor Surg 1994; 58: 895–8.CrossRefGoogle Scholar
  162. 162.
    Gentilello LM, Cobean RA, Offner PJ, Soderberg RW, Jurkovich GJ. Continuous arteriovenous rewanning: rapid reversal of hypothermia in critically ill patients. J Trauma 1992; 32: 316–25.PubMedCrossRefGoogle Scholar
  163. 163.
    Brauner A, Wrigge H, Kersten J, Rathgeber J, Weyland W, Burchardi H. Severe accidental hypothermia: rewanning strategy using a veno-venous bypass system and a convective air warmer. Intensive Care Med 1999; 25: 520–3.CrossRefGoogle Scholar
  164. 164.
    Ayres SM, Keenan RL. The hyperthermic syndromes. In: Ayres SM, Grenvik A, Holbrook PR, Shoemaker WC eds. Textbook of Critical Care 3rd ed. Philadelphia: W.B. Saunders, 1995: 1520–3.Google Scholar
  165. 165.
    Cunha BA. Shea KW. Fever in the intensive care unit. Infect Dis Clin North Am 1996; 10: 185209.Google Scholar
  166. 166.
    Saper CB, Breder CD. The neurologic basis of fever. N Engl J Med 1994; 330: 1880–6.PubMedCrossRefGoogle Scholar
  167. 167.
    Robins HI, Hugander A, Cohen JD. Whole body hyperthermia in the treatment of neoplastic disease. Radiol Clin North Am 1989; 27: 603–10.PubMedGoogle Scholar
  168. 168.
    Bull JM, Lees D, Schuette W, Whang-Peng J, Smith R, Bynum G, Atkinson ER, Gottdiener JS, Gralnick HR, Shawker TH, DeVita VT Jr. Whole body hyperthermia: a phase-I trial of a potential adjuvant to chemotherapy. Ann Intern Med 1979; 90: 317–23.PubMedCrossRefGoogle Scholar
  169. 169.
    Levin W, Blair RM. Clinical experience with combined whole-body hyperthermia and radiation. In: Streffer C, ed. Cancer Therapy by Hyperthermia and Radiation. Baltimore: Urban & Schwarzenberg, 1978.Google Scholar
  170. 170.
    Pettigrew RT, Galt JM, Ludgate CM, Smith AN. Clinical effects of whole body hyperthermia in advanced malignancy. Br Med J 1974; 4: 679–82.PubMedCrossRefGoogle Scholar
  171. 171.
    Frey MA, Kenney RA. Cardiac response to whole-body heating. Aviat Space Environ Med 1979; 50: 387–9.PubMedGoogle Scholar
  172. 172.
    Simon HB. Hyperthermia. N Engl J Med 1993; 329: 483–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Leibshutz DC, Boutros AR, Printen KJ. Metabolic responses to hyperpyrexia. Surg Gynecol Obstet 1974; 139: 403–5.Google Scholar
  174. 174.
    Yarbrough BE, Hubbard RW. Heat related illness. In: Auerbach PS, Geehr EC, eds. Management of Wilderness and Environmental Emergencies. 2d edition St. Louis: CV Mosby, 1989: 119–43.Google Scholar
  175. 175.
    Bouchama A, Hammami MM, Haq A, Jackson J, al-Sedairy S. Evidence for endothelial cell activation/injury in heatstroke. Crit Care Med 1996; 24: 1173–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Carlson AW, Sakha F. Unraveling the mysteries of heatstroke. Crit Care Med 1996; 24: 1101.PubMedCrossRefGoogle Scholar
  177. 177.
    Guyton AC, Hall JE. Energetics, metabolic rate, and regulation of body temperature. In: Human Physiology and Mechanisms of Disease. 6th ed. Philadelphia: W.B. Saunders, 1997: 571–82.Google Scholar
  178. 178.
    Dubois EF. Why are fever temperatures over 106°F rare? Am J Med Sci 1949; 217: 361–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Mackowiak PA, Boulant JA. Fever’s glass ceiling. Clin Infect Dis 1996; 22: 525–36.PubMedCrossRefGoogle Scholar
  180. 180.
    Pittman QJ, Poulin P, Wilkinson MF. Role of neurohypophysial hormones in temperature regulation. Ann NY Acad Sci 1993; 689: 375–81.PubMedCrossRefGoogle Scholar
  181. 181.
    Pittman QJ, Wilkinson MF. Central arginine vasopressin and endogenous antipyresis. Can J Physiol Pharmacol 1992; 70: 786–90.PubMedCrossRefGoogle Scholar
  182. 182.
    Kluger MJ. The adaptive value of fever. In: Mackowiak PA, ed. Fever: Basic Mechanisms and Management. New York: Raven Press, 1991: 105–24.Google Scholar
  183. 183.
    Duff GW. Is fever beneficial to the host: a clinical perspective. Yale J Biol Med 1986; 59: 125–30.PubMedGoogle Scholar
  184. 184.
    Mackowiak PA. Concepts of fever. Arch Intern Med 1998; 158: 1870–81.PubMedCrossRefGoogle Scholar
  185. 185.
    Dinarello CA. Cytokines as endogenous pyrogens. In: Mackowiak PA, ed. Fever: Basic Mechanisms and Management. 2nd ed. Philadelphia: Lippincott - Raven Publishers, 1997: 87116.Google Scholar
  186. 186.
    Dinarello CA. Interleukin-l. Adv Pharmacol 1994; 25: 21–51.PubMedCrossRefGoogle Scholar
  187. 187.
    Tracey K, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 1994; 45: 491–503.PubMedCrossRefGoogle Scholar
  188. 188.
    Jones TH. Interleukin-6 an endocrine cytokine. Clin Endocrinol (Ox1) 1994; 40: 703–13.CrossRefGoogle Scholar
  189. 189.
    Kushner I, Rzewnicki DL. The acute phase response. In: Mackowiak PA, ed. Fever: Basic Mechanisms and Management. 2nd ed. Philadelphia: Lippincott–Raven Publishers, 1997: 165–76.Google Scholar
  190. 190.
    Volanakis JE. Acute phase proteins. In: McCarty DJ, Koopman WJ, eds. Arthritis and Allied Conditions: A Textbook of Rheumatology. Philadelphia: Lea & Febiger, 1993: 469–77.Google Scholar
  191. 191.
    Xu L, Badolato R, Murphy WJ, Longo DL, Anver M, Hale S, Oppenheim JJ, Wang JM. A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol 1995; 155: 1184–90.PubMedGoogle Scholar
  192. 192.
    Dinarello CA. Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 1984; 311: 1413–8.PubMedCrossRefGoogle Scholar
  193. 193.
    Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 1987; 238: 522–4.PubMedCrossRefGoogle Scholar
  194. 194.
    Bryant RE, Hood AF, Hood CE, Koenig MG. Factors affecting mortality of gram-negative rod bacteremia. Arch Intern Med 1971; 127: 120–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Weinstein MP, Iannini PB, Stratton CW, Eickhoff TC. Spontaneous bacterial peritonitis. A review of 28 cases with emphasis on improved survival and factors influencing prognosis. Am J Med 1978; 64: 592–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Stanley ED, Jackson GG, Panusarn C, Rubenis M, Dirda V. Increased viral shedding with aspirin treatment of rhinovirus infection. JAMA 1975; 231: 1248–51.PubMedCrossRefGoogle Scholar
  197. 197.
    Graham NM, Burrell CJ, Douglas RM, Debelle P, Davies L. Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers. J Infect Dis 1990; 162: 1277–82.PubMedCrossRefGoogle Scholar
  198. 198.
    Casey LC, Balk Ra, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 1993; 119: 771–8.PubMedCrossRefGoogle Scholar
  199. 199.
    Henricson BE, Neta R, Vogel SN. An interleukin-1 receptor antagonist blocks lipopolysaccharideinduced colony-stimulating factor production and early endotoxin tolerance. Infect Immun 1991; 59: 1188–91.PubMedGoogle Scholar
  200. 200.
    Opal SM, Cross AS, Sadoff JC, Collins HH, Kelly NM, Victor GH, Palardy JE, Bodimer MW. Efficacy of antilipopolysaccharide and anti-tumor necrosis factor monoclonal antibodies in a neutropenic rat model of Pseudomonas sepsis. J Clin Invest 1991; 88: 885–90.PubMedCrossRefGoogle Scholar
  201. 201.
    Gronert GA, Ahern CP, Milde JH, White RD. Effect of CO2, calcium, digoxin, and potassium on cardiac and skeletal muscle metabolism in malignant hyperthermia susceptible swine. Anesthesiology 1986; 64: 24–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Gronert GA, Thompson RL, Onofrio BM. Human malignant hyperthermia: awake episodes and correction by dantrolene. Anesth Analg 1980; 59: 377–8.PubMedCrossRefGoogle Scholar
  203. 203.
    Hunter SL, et al: Malignant hyperthermia in a college football player. Physician Sportsmed 1987; 15: 77.Google Scholar
  204. 204.
    Ranklev E, Fletcher R, Krantz P. Malignant hyperpyrexia and sudden death. Am J Forensic Med Pathol 1985; 6: 149–50.PubMedCrossRefGoogle Scholar
  205. 205.
    Pollack N, Hodges M, Sendai(J. Prolonged malignant hyperthermia in the absence of triggering agents. Anaesth Intensive Care 1992; 20: 520–3.Google Scholar
  206. 206.
    Ording H. Incidence of malignant hyperthermia in Denmark. Anesth Analg 1985; 64: 700704.Google Scholar
  207. 207.
    Entrap MH, Davis FG. Perioperative complications of cnesthesia. Surg Clin North Am 1991; 71: 1151–73.Google Scholar
  208. 208.
    ’ Connor MF, Hall JB. Hyperthermia. In: Hall JB, Schmidt GA, Wood LDH, eds. Principles of Critical Care. 2nd ed. New York: McGraw-Hill, 1998: 1657–66.Google Scholar
  209. 209.
    Lopez JR, Alamo L, Caputo C, Wikinski J, Ledezma D. Intracellular ionized calcium concentration in muscles from humans with malignant hyperthermia. Muscle Nerve 1985; 8: 355–8.PubMedCrossRefGoogle Scholar
  210. 210.
    Tong J, Oyamada H, Demaurex N, Grinstein S, McCarthy TV, MacLennan DH. Caffeine and halothane sensitivity of intracellular Cat+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. J Biol Chem 1997; 272: 26332–9.PubMedCrossRefGoogle Scholar
  211. 211.
    Halsall PJ, Cain PA, Ellis FR. Retrospective analysis of anaesthetics received by patients before susceptibility to malignant hyperpyrexia was recognized. Br J Anaesth 1979; 51: 949–54.PubMedCrossRefGoogle Scholar
  212. 212.
    Littleford JA, Patel LR, Bose D, Cameron CB, McKillop C. Masseter muscle spasm in children: implications of continuing the triggering anesthetic. Anesth Analg 1991; 72: 151–60.PubMedCrossRefGoogle Scholar
  213. 213.
    Britt BA. The clinical aspects of malignant hyperthermia. In: Felipe MAN, Gottman S, Khambatta HJ, eds. Malignant Hyperthennia: Current Concepts. International Course, Barcelona, Spain, September 15–17, 1988. Englewood, NJ: Normed Verlag, 1989: 91–107.Google Scholar
  214. 214.
    Gronert GA. Malignant hyperthermia. Anesthesiology 1980; 53: 395–423.PubMedCrossRefGoogle Scholar
  215. 215.
    Lopez JR, Allen P, Alamo L, Ryan JF, Jones DE, Sreter F. Dantrolene prevents the malignant hyperthermic syndrome by reducing free calcium concentration in skeletal muscle of susceptible swine. Cell Calcium 1987; 8: 385–96.PubMedCrossRefGoogle Scholar
  216. 216.
    Mora CT, Eisenkraft JB. Dantrolene prophylaxis and neuromuscular disorders. Anesthesiology 1987; 66: 702–703.PubMedCrossRefGoogle Scholar
  217. 217.
    Watson CB, Reierson N, Norfleet EA. Clinically significant muscle weakness induced by oral dantrolene sodium prophylaxis for malignant hyperthermia. Anesthesiology 1986; 65: 312–4.PubMedCrossRefGoogle Scholar
  218. 218.
    Rubin AS, Zablocki AD. Hyperkalemia, verapamil, and dantrolene. Anesthesiology 1987; 66: 246–9.PubMedCrossRefGoogle Scholar
  219. 219.
    Saltzman LS, Kates RA, Corke BC, Norfleet EA, Heath KR. Hyperkalemia and cardiovascular collapse after verapamil and dantrolene administration in swine. Anesth Analg 1984; 63: 473–8.PubMedCrossRefGoogle Scholar
  220. 220.
    Yoganathan T, Casthely PA, Lamprou M. Dantrolene-induced hyperkalemia in a patient treated with diltiazem and metoprolol. J Cardiothorac Anesth 1988; 2: 363–4.PubMedCrossRefGoogle Scholar
  221. 221.
    Allen GC, Rosenberg H, Fletcher JE. Safety of general anesthesia in patients previously tested negative for malignant hyperthermia susceptibility. Anesthesiology 1990; 72: 619–22.PubMedCrossRefGoogle Scholar
  222. 222.
    Keck PE Jr, Pope HG Jr, McElroy SL. Frequency and presentation of neuroleptic malignant syndrome: A prospective study. Am J Psychiatry 1987; 144: 1344–6.Google Scholar
  223. 223.
    Caroff SN, Mann SC. Neuroleptic malignant syndrome. Med Clin North Am 1993; 77: 185–202.PubMedGoogle Scholar
  224. 224.
    Lazarus A, Mann SC, Caroff SN. The Neuroleptic Malignant Syndrome and Related Conditions. Washington, DC: American Psychiatric Press Inc, 1989:Google Scholar
  225. 225.
    Caroff SN, Mann SC. Neuroleptic malignant syndrome. Psychopharmacol Bull 1988; 24: 25–29.PubMedGoogle Scholar
  226. 226.
    Ferko A, Calesnick B. L-DOPA and dopamine on skeletal muscle. Res Commun Chem Pathol Pharmacol 1971; 2: 146–53.PubMedGoogle Scholar
  227. 227.
    Shalev A, Hermesh H, Munitz H. Mortality from neuroleptic malignant syndrome. J Clin Psychiatry 1989; 50: 18–25.PubMedGoogle Scholar
  228. 228.
    Sakkas P, Davis JM, Hua J, et al: Pharmacotherapy of neuroleptic malignant syndrome. Psychiatric Annals 1991; 21: 157–64.Google Scholar
  229. 229.
    Sakkas P, Davis JM, Janicak PG, Wang ZY. Drug treatment of the neuroleptic malignant syndrome. Psychophannacol Bull 1991; 27: 381–4.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Michael H. Entrup
    • 1
  • Sana Ata
    • 1
  1. 1.Lahey Clinic Medical CenterBurlingtonUSA

Personalised recommendations