Advertisement

Renal Osteodystrophy: Prevention and Management

  • Esther A. Gonzalez
  • Kevin J. Martin

Abstract

Renal osteodystrophy is the term used to describe the complex abnormalities of bone that may occur, to variable extents, in many patients with renal disease. The spectrum of disorders of the skeleton in these patients is broad and extends from states of accelerated bone turnover with increased bone resorption due to excessive levels of parathyroid hormone (PTH) (osteitis fibrosa) to disorders of bone mineralization (osteomalacia) and other states of decreased bone turnover (adynamic bone). In addition, osteosclerosis, bone cysts, loss of bone mineral, and skeletal fractures may occur. The pathogenesis of these abnormalities has been the subject of intense investigation for the past two decades; the consequences of decreased renal function that give rise to these disorders of bone have been characterized and serve as the basis for a rational approach to the prevention and therapy of the skeletal abnormalities of renal dysfunction.

Keywords

Chronic Renal Failure Parathyroid Gland Parathyroid Tissue Renal Osteodystrophy Osteitis Fibrosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sherrard DJ, Hercz G, Pei Y, Maloney NA, Greenwood Celia, Manuel A, Saiphoo C, Fenton SS, Segre G: The spectrum of bone disease in end-stage renal failure—an evolving disorder. Kidney Int 43: 436–442, 1993.PubMedCrossRefGoogle Scholar
  2. 2.
    Quarles LD, Lobaugh B, Murphy G: Intact parathyroid hormone overestimates the presence and severity of parathyroid mediated osseus abnormalities in uremia. J Clin Endocrinol Metab 75: 145–150, 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    Slatopolsky E, Caglar S, Pennell JP, Taggart J, Canterbury J, Reiss E, Bricker NS: On the pathogenesis of hyperparathyroidism in chronic experimental insufficiency in the dog. J Clin Invest 50: 492–499, 1971.PubMedCrossRefGoogle Scholar
  4. 4.
    Slatopolsky E, Caglar S, Gradowska L, Canterbury J, Reiss E, Bricker NS: On the prevention of secondary hyperparathyroidism in experimental chronic renal disease using “proportional reduction” of dietary phosphorus intake. Kidney Int 2: 147–151, 1972PubMedCrossRefGoogle Scholar
  5. 5.
    Tanaka Y, DeLuca HF: The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys 159: 566–574, 1973.CrossRefGoogle Scholar
  6. 6.
    Lopez-Hilker S, Dusso AS, Rapp NS, Martin KJ, Slatopolsky E: Phosphorus restriction reverses hyperparathyroidism in uremia independent of changes in calcium and calcitriol. Am J Physiol 259: F432–F437, 1990.PubMedGoogle Scholar
  7. 7.
    Aparicio M, Combe C, Lafage MH, De Precigout V, PotauxGoogle Scholar
  8. L, Bouchet JA: In advanced renal failure, dietary phosphorus restriction reverses hyperparathyroidism independent of changes in the levels of calcitriol. Nephron 63: 122–123, 1992.Google Scholar
  9. 8.
    Fugakawa M, Kurokawa K: Mild dietary phosphorus restriction directly prevents enhanced parathyroid hormone secretion and synthesis and proliferation of parathyroid cells in chronic renal failure in rats. J Am Soc Nephrol 3: 703, 1992.Google Scholar
  10. 9.
    Delmez JA, Slatopolsky E: Hyperphosphatemia: its consequences and treatment in patients with chronic renal disease. Am J Kidney Dis 19: 303–317, 1992.PubMedGoogle Scholar
  11. 10.
    Portale AM, Booth BE, Halloran BP, Morris RC: Effect of dietary phosphorus on circulating concentration of 1,25(OH)2D3 and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest 73: 1580–1589, 1984.PubMedCrossRefGoogle Scholar
  12. 11.
    Kaehny W, Hegg A, Alfrey A: Gastrointestinal absorption of aluminum from aluminum-containing antacids. N Engl J Med 296: 1389–1390, 1977.PubMedCrossRefGoogle Scholar
  13. 12.
    Platts MM, Goode GC, Hislop JS: Composition of the domestic water supply and the incidence of fractures and encephalopathy in patients on home dialysis. Br Med J 2: 657660, 1977.Google Scholar
  14. 13.
    Winney RJ, Cowie JF, Robson JS: Role of plasma aluminum in the detection and prevention of aluminum toxicity. Kidney Int 18:S-91–S-95, 1986.Google Scholar
  15. 14.
    Sheikh MS, Maguire JA, Emmett M, Santa Ana CA, Nicar MJ, Schiller LR, Fordtran JS: Reduction of dietary phosphorus absorption by phosphorus binders. J Clin Invest 83: 66–73, 1989.PubMedCrossRefGoogle Scholar
  16. 15.
    Slatopolsky E, Weerts C, Lopez-Hilker S, Norwood K, Zink M, Windus D, Delmez J: Calcium carbonate is an effective phosphate binder in dialysis patients. N Engl J Med 315: 157161, 1986.Google Scholar
  17. 16.
    Slatopolsky E, Weerts C, Norwood K, Giles K, Fryer P, Finch J, Windus D, Delmez J: Long term effects of calcium carbonate and 2,5 meq/liter calcium dialysate on mineral metabolism. Kidney Int 36: 897–903, 1989.PubMedCrossRefGoogle Scholar
  18. 17.
    Delmez JA, Tindira CA, Windus DW, Norwood KY, Giles KS, Nighswander TL, Slatopolsky EL: Calcium acetate as phosphorus binder in hemodialysis patients. J Am Soc Nephrol 3: 96–102, 1992.PubMedGoogle Scholar
  19. 18.
    Caravaca F, Santos I, Cuberoj J, Esparragp JF, Arrobas M, Pizarro JL, Robles R, Sanches-Casado E: Calcium acetate versus calcium carbonate as phosphate binders in hemodialysis patients. Nephron 60: 423–427, 1992.PubMedCrossRefGoogle Scholar
  20. 19.
    Hwang S-J, Lai Y-H, Chen H-C, Tsai J-H: Comparison of the effects of calcium carbonate and calcium acetate on zinc tolerance test in hemodialysis patients. Am J Kidney Dis 19: 57–60, 1992.PubMedGoogle Scholar
  21. 20.
    Mai L, Emmett M, Sheikh MS, Santa Ana CA, Schiller LR, Fordtran JS: Calcium acetate an effective phosphorus binder in patients with renal failure. Kidney Int 36: 690–695, 1989.PubMedCrossRefGoogle Scholar
  22. 21.
    Froment DP, Molitoris Ba, Buddington B, Miller N, Alfrey AC: Site and mechanism of enhanced gastrointestinal absorption of aluminum by citrate. Kidney Int 36: 978–984, 1989.PubMedCrossRefGoogle Scholar
  23. 22.
    O’Donovan R, Baldwin D, Hammer M, Moniz C, Parsons V: Substitution of aluminum salts by magnesium salts in control of dialysis hyperphosphatemia. Lancet 1: 880–882, 1986.PubMedCrossRefGoogle Scholar
  24. 23.
    Moriniere PH, Fournier A, Lefton A, Herve M, Sebert JL, Gregoire I, Bataille P, Fueris J: Comparison of 1-a OH vitamin D3 and high doses of calcium carbonate for the control of hyperparathyroidism and hyperaluminemia in patients on maintenance dialysis. Nephron 39: 309–315, 1985.PubMedCrossRefGoogle Scholar
  25. 24.
    Moriniere PH, Boudailliez N, Hocine CH, Belbrik S, Renaud H, Westeel PF, Cohen Solal ME, Fournier A: Prevention of osteitis fibrosa, aluminum bone disease and soft tissues calcification in dialysis patients: a long term comparison of moderate doses of oral calcium ± Mg(OH)Z versus Al(OH)3 ± la OH vitamin D3. Nephrol Dial Transplant 4: 1045–1053, 1989.PubMedGoogle Scholar
  26. 25.
    Moriniere PH, Vinatier I, Westeel PF, Cohen Solal ME, Belbrik S, Abdulmassih Z, Lefion P, Roche D, Fournier A: Magnesium hydroxide as a complementary aluminum free phosphate binder to high doses of oral calcium in uremic patients on chronic hemodialysis: lack of deleterious effect on bone mineralization. Nephrol Dial Transplant 3: 651–656, 1988.PubMedGoogle Scholar
  27. 26.
    Wilson L, Felsenfeld A, Drezner MK, Llach F: Altered divalent ion metabolism in early renal failure: role of 1,25(OH)2D. Kidney Int 27: 565, 1985.PubMedCrossRefGoogle Scholar
  28. 27.
    Gray R, Boyle I, DeLuca HF: 1971. Vitamin D metabolism: the role of kidney tissue. Science 172: 1232–1234, 1971.Google Scholar
  29. 28.
    Brown EM, Wilkson RE, Eastman RC, Pallotta J, Marynick SP: Abnormal regulation of parathyroid hormone release by calcium in secondary hyperparathyroidism due to chronic renal failure. J Clin Endocrinol Metab 54: 172–179, 1982.PubMedCrossRefGoogle Scholar
  30. 29.
    Delmez AJ, Tindira C, Grooms P, Dusso A, Windus DW, Slatopolsky E: Parathyroid hormone suppression by intrave nous 1,25-dihydroxyvitamin D: a role for increased sensitivity to calcium. J Clin Invest 83: 1349–1355, 1989.PubMedCrossRefGoogle Scholar
  31. 30.
    Okazaki T, Igarashi T, Kronenberg HM: 5’-Flanking region of the parathyroid hormone gene mediates negative regulation by 1,25(OH)2D3. J Biol Chem 263: 2203–2208, 1988.PubMedGoogle Scholar
  32. 31.
    Kremer R, Bolivar I, Goltzman D, Hendy GN: Influence of calcium and 1,25-dihydroxycholecalciferol on proliferation and proto-oncogene expression in primary cultures of bovine parathyroid cells. Endocrinology 125: 935–941, 1989.PubMedCrossRefGoogle Scholar
  33. 32.
    Korkor AB: Reduced binding of [3H] 1,25-dihydroxyvitamin D3 in the parathyroid glands of patients with renal failure. N Engl J Med 316: 1573–1577, 1987.PubMedCrossRefGoogle Scholar
  34. 33.
    Somerville PJ, Kaye M: Resistance to parathyroid hormone in renal failure: role of vitamin D metabolites. Kidney Int 14: 245–254, 1978.PubMedCrossRefGoogle Scholar
  35. 34.
    Massry SG, Stein R, Garty J, Aruff AI, Coburn JW, Norman AW, Friedler RM: Skeletal resistance to the calcemic action of parathyroid hormone in uremia: role of 1,25(OH)2D3. Kidney Int 9: 467–474, 1976.PubMedCrossRefGoogle Scholar
  36. 35.
    Kaye M, Chatterjee G, Cohen GF, Borra S, Sarar S: Arrest of hyperparathyroid bone disease with dihydrotachysterol in patients undergoing chronic hemodialysis. Ann Intern Med 73: 225–233, 1970.PubMedCrossRefGoogle Scholar
  37. 36.
    Kaye M, Sagar S: Effect of dihydrotachysterol on calcium absorption in uremia. Metabolism 21: 815–824, 1972.PubMedCrossRefGoogle Scholar
  38. 37.
    Witmer G, Margolis A, Fontaine O, Fritsch J, Lenoir G, Broyer M, Balsan S: Effects of 25-hydroxycholecalciferol on bone lesions of children with terminal renal failure. Kidney Int 10: 395–408, 1976.PubMedCrossRefGoogle Scholar
  39. 38.
    Recker R, Schoenfeld P, Letten J, Slatopolsky E, Goldsmith R, Brickman A: The efficacy of calcifediol in renal osteodystrophy. Arch Intern Med 138: 857–863, 1978.PubMedGoogle Scholar
  40. 39.
    Brickman AS, Sherrard DJ, Jowsey J, Singer FR, Baylink DJ, Maloney N, Massry SG, Norman AW, Coburn JW: 1,25dihydroxycholecalciferol: effect on skeletal lesions and plasma parathyroid hormone in uremic osteodystrophy. Arch Intern Med 134: 883–888, 1974.PubMedCrossRefGoogle Scholar
  41. 40.
    Silverberg DS, Bettcher KB, Dossetor JB, Overton TR, Holick MR, DeLuca HF: Effect of 1,25dihydroxycholecalciferol in renal osteodystrophy. Can Med Assoc J 112: 190–195, 1975.PubMedGoogle Scholar
  42. 41.
    Baker LRI, Abrams SML, Roe CJ, Faugere MC, Fanti P, Subayti Y, Malluche HH: 1,25(OH)2D3 administration in moderate renal failure: a prospective double-blind trial. Kidney Int 35: 661–669, 1989.PubMedCrossRefGoogle Scholar
  43. 42.
    Nordal KP, Dahl E: Low dose calcitriol versus placebo in patients with pre-dialysis chronic renal failure. J Clin Endocrinol Metab 67: 661–669, 1988.CrossRefGoogle Scholar
  44. 43.
    Christiansen CL, Rodbro P, Christiansen MS, Hartnack B, Transbol I: Deterioration of renal function during treatment of chronic renal failure with 1,25-dihydroxycholecalciferal in chronic renal failure. Lancet 2: 700–703, 1978.PubMedCrossRefGoogle Scholar
  45. 44.
    Coen G, Mazzaferro S, Bonucci E, Ballanti P, Massimetti C, Donato G, Landi A, Smacchi A, Della Rocca C, Cinotti GA: Treatment of secondary hyperparathyroidism of predialysis chronic renal failure with low doses of 1,25(OH)2D3: humoral and histomorphometric results. Miner Electrolyte Metab 12: 375–382, 1986.PubMedGoogle Scholar
  46. 45.
    Baker LRI, Abrams SML, Roe CJ, Faugere M-C, Fanti P, Subayti Y, Malluche HH: Early therapy of renal bone disease with calcitriol: a prospective double-blind study. Kidney Int 36 (S27): S140 - S142, 1989.Google Scholar
  47. 46.
    Bertoli M, Luisetto G, Ruffatti A, Urso M, Romagnoli G: Renal function during calcitriol therapy in chronic renal failure. Clin Nephrol 33: 98–102, 1990.PubMedGoogle Scholar
  48. 47.
    Massry SG, Goldstein DA, Malluche HH: Current status of the use of 1,25(OH)2D3 in the management of renal osteodystrophy. Kidney Int 19: 409–418, 1980.CrossRefGoogle Scholar
  49. 48.
    Slatopolsky E, Weerts C, Thielan J, Horst R, Harter H, Martin KJ: Marked suppression of secondary hyperparathyroidism by intravenous administration of 1,25dihydroxycholecalciferol in uremic patients. J Clin Invest 74: 2136–2143, 1984.PubMedCrossRefGoogle Scholar
  50. 49.
    Andress DL, Norris KC, Coburn JW, Slatopolsky EA, Sherrard DJ: Intravenous calcitriol in treatment of refractory osteitis fibrosa of chronic renal failure. N Engl J Med 321: 274–279, 1989.PubMedCrossRefGoogle Scholar
  51. 50.
    Tsukamoto Y, Nomura M, Maurno F: Pharmacological parathyroidectomy by oral 1,25(oh)2D, pulse therapy. Nephron 51: 130–131, 1989.PubMedCrossRefGoogle Scholar
  52. 51.
    Tsukamoto Y, Nomura M, Takahashi Y, Takagi Y, Yoshida A, Nagaoka T, Togashi K, Kikawada R, Marumo F: The “oral 1,25(OH)2D3 pulse therapy” in hemodialysis patients with severe secondary hyperparathyroidism. Nephron 57: 2328, 1991.CrossRefGoogle Scholar
  53. 52.
    Martin KJ, Ballal HS, Domoto DT, Blalock S, Weindel M: Pulse oral calcitriol for the treatment of hyperparathyroidism in patients on continuous ambulatory peritoneal dialysis: preliminary observations. Am J Kidney Dis 19: 540–545, 1992.PubMedGoogle Scholar
  54. 53.
    Reichel H, Szabo A, Uhl J, Resian S, Schmitz A, SchmidtGayk H, Ritz E: Intermittent versus continuous administration of 1,25-dihydroxyvitamin D3 in experimental renal hyperparathyroidism. Kidney Int 44: 1259–1265, 1993.PubMedCrossRefGoogle Scholar
  55. 54.
    Fukada N, Tanaka H, Tominaga Y, Fukagawa M, Kurokawa K, Seino Y: Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest 92: 1436 1443, 1993.Google Scholar
  56. 55.
    Walling MW: Intestinal Ca and phosphate transport: differential responses of vitamin D3 metabolites. Am J Physiol 233: E488 - E494, 1977.PubMedGoogle Scholar
  57. 56.
    Ott SM, Maloney NA, Coburn JW, Alrey AC, Sherrard DJ: The prevalence of bone aluminum deposition in renal osteodystrophy and its relation to the response to calcitriol therapy. N Engl J Med 307: 709–713, 1982.PubMedCrossRefGoogle Scholar
  58. 57.
    Malluche HH, Faugere MC: Effects of 1,25(OH)2D3 administration on bone in patients with renal failure. Kidney Int 28 (Suppl 29): S48 - S53, 1990.Google Scholar
  59. 58.
    Brown AJ, Ritter CR, Finch JL, Morrissey J, Martin KJ, Murayama E, Nishii Y, Slatopolsky E: The noncalcemic analogue of vitamin D, 22-oxacalcitriol, suppresses parathyroid hormone synthesis and secretion. J Clin Invest 84: 728–732, 1989.PubMedCrossRefGoogle Scholar
  60. 59.
    Kopple JD, Coburn JW: Metabolic studies of low protein diets in uremia. II. Calcium, phosphorus and magnesium. Medicine (Baltimore) 52: 597–607, 1973.CrossRefGoogle Scholar
  61. 60.
    Clarkson EM, Eastwood JB, Koutsaimanis KG, de Wardener HE: Net intestinal absorption of calcium in patients with chronic renal failure. Kidney Int 3: 258–263, 1973.PubMedCrossRefGoogle Scholar
  62. 61.
    Andress D, Otts S, Maloney N, Sherrard D: Effect of parathyroidectomy on bone aluminum accumulation in chronic renal failure. N Engl J Med 31: 468–473, 1985.CrossRefGoogle Scholar
  63. 62.
    Kaye M, D’Amour P, Henderson J: Elective total parathyroidectomy without transplantation in end stage renal disease. Kidney Int 35: 1390–1399, 1989.PubMedCrossRefGoogle Scholar
  64. 63.
    Takagi H, Tominaga Y, Uchida K, Yamada N, Kawai M, Kano T, Morimoto T: Subtotal versus total parathyroidectomy with forearm autograft for secondary hyperparathyroidism in chronic renal failure. Ann Surg 200: 18–23, 1984.PubMedCrossRefGoogle Scholar
  65. 64.
    White JV, LoGerfo P, Fiend C. Weber C: Autologous parathyroid transplantation. Lancet 2: 461, 1983.PubMedCrossRefGoogle Scholar
  66. 65.
    Ellis HA: Fate of long-term parathyroid autografts in patients with chronic renal failure treated by parathyroidectomy: a histopathological study of autografts, parathyroid glands and bone. Histopathology 13: 289–309, 1988.PubMedCrossRefGoogle Scholar
  67. 66.
    Giangrande A, Castiglioni A, Solbiati L, Maria P: Ultrasound-guided percutaneous fine-needle ethanol injection into parathyroid glands in secondary hyperparathyroidism. Nephrol Dial Transplant 7: 412–421, 1992.PubMedGoogle Scholar
  68. 67.
    Page B, Zingraff J, Souberbielle JC, Coutris G, Sarfati E, Drueke T, Moreau JF: Correction of severe secondary hyperparathyroidism in two dialysis patients: surgical removal versus percutaneous ethanol injection. Am J Kidney Dis 19: 378–381, 1992.PubMedGoogle Scholar
  69. 68.
    Takeda S, Michigishi T, Takakura E: Successful ultrasonically guided percutaneous ethanol injection for secondary hyperparathyroidism. Nephrology 62: 100–103, 1992.Google Scholar
  70. 69.
    Ellis HA, McCarthy JH, Herrington J: Bone aluminum in haemodialysed patients and in rats injected with aluminum chloride: relationship to impaired bone mineralization. J Clin Pathol 32: 832–844, 1979.PubMedCrossRefGoogle Scholar
  71. 70.
    Finch JF, Bergfeld M, Martin KJ, Chan YL, Teitelbaum S, Slatopolsky E: The effects of discontinuation of aluminum exposure on aluminum-induced osteomalacia. Kidney Int 30: 318–324, 1986.PubMedCrossRefGoogle Scholar
  72. 71.
    Posner AS, Blumenthal NC, Boskey AL: Model of aluminum induced osteomalacia: inhibition of apatite formation and growth. Kidney Int 29: S17 — S19, 1986.Google Scholar
  73. 72.
    Lieberherr M, Grosse B, Cournot-Witmer G, HermannErlee MPM, Balsan S: Aluminum action on mouse bone cell metabolism and response to PTH and 1,25(OH)2D3. Kidney Int 31: 737–743, 1987.CrossRefGoogle Scholar
  74. 73.
    Goodman WG, Henry DA, Horst R, Nudelman RK, Alfrey AC, Coburn, JW: Parenteral aluminum administration in the dog: II. Induction of osteomalacia and effect on vitamin D metabolism. Kidney Im’ 25: 370–375, 1984.CrossRefGoogle Scholar
  75. 74.
    Morrissey J, Slatopolsky E: Effect of aluminum on parathyroid hormone secretion. Kidney Int 29:S-41—S-44, 1986.Google Scholar
  76. 75.
    Alfrey A: Aluminum metabolism. Kidney Int 29: S8 — S11, 1986.Google Scholar
  77. 76.
    Gonzalez EA, Martin KJ: Aluminum and renal osteodystrophy: a diminishing clinical problem. Trends Endocrinol Metab 3: 371–375, 1992.PubMedCrossRefGoogle Scholar
  78. 77.
    Molitoris BA, Froment DH, MacKenzie TA, Huffer WH, Alfrey AC: Citrate: a major factor in the toxicity of orally administered aluminum compounds. Kidney Int 36: 949–953, 1989.PubMedCrossRefGoogle Scholar
  79. 78.
    Cannatta JB, Fernandez-Soto I, Fernandez MMJ, Brock JH, Fernandez MJL, Halls D: The role of iron metabolism in absorption and cellular uptake of aluminum. Kidney Int 39: 799–803, 1991.CrossRefGoogle Scholar
  80. 79.
    Nebeker HG, Andress DL, Milliner DS, Ott SM, Alrey AC, Slatopolsky EA, Sherrard DJ, Coburn JW: Indirect methods for the diagnosis of aluminim bone disease: plasma aluminum, the desferrioxamine infusion test, and serum iPTH. Kidney Int 29 (Suppl 18): S96 — S99, 1986.Google Scholar
  81. 80.
    Pei Y, Hercz G, Greenwood C, Sherrard D, Segre G, Manuel A, Saiphoo C, Fenton S: Non-invasive prediction of alumi-num bone disease in hemo and peritoneal dialysis patients. Kidney Int 41: 1374–1382, 1992.PubMedCrossRefGoogle Scholar
  82. 81.
    Kaehny WD, Alfrey AC, Holman RE, Shorr WJ: Aluminum transfer during hemodialysis. Kidney Int 12: 361–365, 1977.PubMedCrossRefGoogle Scholar
  83. 82.
    Milliner DS, Hercz G, Milliner JH, Shinaberger JH, Nissenson A, Coburn JW: Clearance of aluminum by hemodialysis: effect of desferrioxamine. Kidney Int 29:5–100S-103, 1986.Google Scholar
  84. 83.
    CONSENSUS conference: Diagnosis and treatment of aluminum overload in end stage renal failure patients. Nephrol Dial Transplant Suppl 1: 1–4, 1993.Google Scholar
  85. 84.
    Swartz RD: Deferoxamine and aluminum removal. Am J Kidney Dis 6: 358–364, 1985.PubMedGoogle Scholar
  86. 85.
    Olivieri NF, Buncic JR, Chew E, Gallant Tsvi, Harrison RV, Keenan N, Logan W, Mitchell D, Ricci G, Skarf B, Taylor M, Freedman MH: Visual and auditory neurotoxicity in patients receiving subcutaneous deferoxamine infusions. N Engl J Med 314: 869–873, 1986.PubMedCrossRefGoogle Scholar
  87. 86.
    Windus DW, Stokes TJ, Julian BA, et al.: Rhizopus infections in hemodialysis patients receiving deferoxamine. Ann Intern Med 107: 678–680, 1987.PubMedCrossRefGoogle Scholar
  88. 87.
    Sherrard DJ, Andress DL: Aluminum-related osteodystrophy. Adv Intern Med 34: 307–324, 1989.PubMedGoogle Scholar
  89. 88.
    Malluche HH, Monier-Faugere MC: Uremic bone disease: current knowledge, controversial issues, and new horizons. Miner Electrolyte Metab 17: 281–296, 1991.PubMedGoogle Scholar
  90. 89.
    Molitoris BA, Alfrey AC, Alfrey PS, Miller NL: Rapid removal of DFO-chelated aluminum during hemodialysis using polysulfone dialyzers. Kidney Int 34: 98–101, 1988.PubMedCrossRefGoogle Scholar
  91. 90.
    Delmez J, Weerts C, Lewis-Finch J, Windus D, Slatopolsky E: Accelerated removal of deferoxamine Mesylate-chelated aluminum by charcoal hemoperfusion in hemodialysis patients. Am J Kidney Dis 13: 308–311, 1989.PubMedGoogle Scholar
  92. 91.
    Weiss LG, Danielson BG, Fellstrom B, Wikstrom B: Aluminum removal with hemodialysis, hemofiltration and hemoperfusion in uremic patients after desferrioxamine infusion. Nephron 51: 325–329, 1989.PubMedCrossRefGoogle Scholar
  93. 92.
    Morniere P, Cohen-Solal M, Belbrik S, Boudailliez B, Marie A, Westeel PF, Renaud H, Fievet P, Lalau JD, Sebert JL, Fournier A: Disappearance of aluminic bone disease in a long term asymptomatic dialysis population restricting Al(OH)3 intake: emergence of an idiopathic adynamic bone disease not related to aluminum Nephron 53: 93–101, 1989.CrossRefGoogle Scholar
  94. 93.
    Malluche HH, Monier-Faugere MC: Risk of adynamic bone disease in dialyzed patients. Kidney Int 42(38):S-62—S-67, 1992.Google Scholar
  95. 94.
    Cohen-Solal ME, Sebert JL, Boudailliez B, Westeel PF, Moriniere PH, Marie A, Garabedian M, Fournier A: Nonaluminic adynamic bone disease in non-dialyzed uremic patients: a new type of osteopathy due to overtreatment? Bone 13: 1–5, 1992.PubMedCrossRefGoogle Scholar
  96. 95.
    De Vernejoul MC, Girot R, Gueris J, Cancela L, Bang S, Bielakoff J, Mautalen C, Goldberg D, Miravet L: Calcium phosphate metabolism and bone disease in patients with homozygous thalassemia. J Clin Endocrinol Metab 54: 276–281, 1982.PubMedCrossRefGoogle Scholar
  97. 96.
    Boivin G, Chapuy MC, Baud C, Meunier Pk Fluoride content in human iliac bone. Results in controls, patients with fluorosis, and osteoporotics treated with fluoride. J Bone Miner Res 3: 497–502, 1988.PubMedCrossRefGoogle Scholar
  98. 97.
    Vincenti F, Arnaud SB, Recker R, Genant H, Amend W, Feduska N, Salvatierra O: Parathyroid and bone response of the diabetic patient to uremia. Kidney Int 25: 677–682, 1984.PubMedCrossRefGoogle Scholar
  99. 98.
    Morton AR, Hercz G: Hypercalcemia in dialysis patients: 1991. Comparison of diagnostic methods. Dial Transplant 20: 661–694, 1991.Google Scholar
  100. 99.
    Geyko F, Yamada T, Odani S, Nakagawa Y, Arakawa M, Kunitomo T, Kataoka H, Suzuki M, Hirasswa Y, Shirahama T, Cohen AS, Schmid K: A new form of amyloid protein associated with chronic hemodialysis was identified as 13–2 microglobulin. Biochem Biophys Res Commun 129: 701–706, 1985.CrossRefGoogle Scholar
  101. 100.
    Geyko F, Homma N, Suzuki Y, Arakawa M: Serum levels of 13–2 microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N Engl J Med 314: 585–586, 1986.CrossRefGoogle Scholar
  102. 101.
    Sethi D, Grower PE: Synovial fluid 13–2 microglobulin levels in dialysis arthropathy. N Engl J Med 315: 1419–1420, 1986.PubMedCrossRefGoogle Scholar
  103. 102.
    Linker A, Carney HC: Presence and role of glycosaminoglycans in amyloidosis. Lab Invest 57: 297–305, 1987.PubMedGoogle Scholar
  104. 103.
    Saito A, Ogawa H, Chung TG, Ohkubo I: Accumulation of serum amyloid P and its deposition in the carpal tunnel region of long-term hemodialysis patients. Trans Am Soc Artif Intern Organs 33: 512–513, 1987.Google Scholar
  105. 104.
    Netter P, Kessler M, Burnel D, Hutin MF, Delones S, Benoit J, Gaucher A: Aluminum in the joint tissues of chronic renal failure patients treated with regular hemodialysis and aluminum compounds. J Rheumatol 11: 66–70, 1984.PubMedGoogle Scholar
  106. 105.
    Cary NRB, Sethi D, Brown EA, Erhardt CC, Woodrow DF, Gower PE: Dialysis arthropathy. Amyloid or iron? Br Med J 293: 1392–1394, 1986.CrossRefGoogle Scholar
  107. 106.
    Van Ypersele De Strihou C, Jadoul M, Malghem J, Maldague B, Jamart J: Effect of dialysis-related amyloidosis. Kidney Int 39: 1012–1019, 1991.Google Scholar
  108. 107.
    Miura Y, Ishiyama T, Inomata A, Takeda T, Senma S, Okuyama K, Suzuki Y: Radiolucent bone cysts and type of dialysis membrane used in patients undergoing long-term hemodialysis. Nephron 60: 268–273, 1992.PubMedCrossRefGoogle Scholar
  109. 108.
    Acchiardo S, Kraus AP, Jennings BR: 13–2-microglobulin levels in patients with renal insufficiency. Am J Kidney Dis 13: 70–74, 1989.PubMedGoogle Scholar
  110. 109.
    Gejyo F, Homma N, Arakawa M: Long-term complications of dialysis: pathogenetic factors with special reference to amyloidosis. Kidney Int 43(41): S-78—S-82, 1993.Google Scholar
  111. 110.
    Lefebvre A, deVernejoul MC, Gueris J, Goldfarb B, Graulet AM, Morieux C: Optimal correction of acidosis changes progression of dialysis osteodystrophy. Kidney Int 36: 1112–1118, 1989.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Esther A. Gonzalez
    • 1
  • Kevin J. Martin
    • 1
  1. 1.Division of Nephrology Department of Internal MedicineSt. Louis University Health Sciences CenterSt. LouisUSA

Personalised recommendations