Treatment of Hyperlipidemia in the Nephrotic Syndrome

  • George A. Kaysen


The nephrotic syndrome is defined by urinary protein excretion of more than 3.5 g/day (1) and is generally accompanied by hypoalbuminemia and increased blood lipid levels (2). Both plasma cholesterol and triglyceride concentration are usually inversely related to plasma cholesterol concentration (3) or to a marker of glomerular permselectivity, the renal clearance of albumin (4). Cholesterol generally bears a negative first-order correlation with serum albumin concentration, while triglyceride levels increase asymptotically as plasma albumin concentration declines (3,4).


Nephrotic Syndrome Cholesteryl Ester Transfer Protein Urinary Protein Excretion Cholesterol Ester Transfer Protein Blood Lipid Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Earley LE, Farland M: Nephrotic syndrome. In: MB Strauss, LG Welt, eds, Diseases of the Kidney, 3rd ed. Little, Brown, Boston, pp 765–813, 1979.Google Scholar
  2. 2.
    Earley LE, Havel RJ, Hopper J, Graus H: Nephrotic syndrome. Calif Med 115: 23–41, 1971.PubMedGoogle Scholar
  3. 3.
    Thomas EM, Rosenblum AH, Lander HB, Fisher R: Relationship between blood lipid and blood protein levels in the nephrotic syndrome. Am J Dis Child 81: 207–214, 1951.Google Scholar
  4. 4.
    Kaysen GA, Gambertoglio J, Felts J, Hutchison FN: Albumin synthesis, albuminuria and hyperlipidemia in nephrotic patients. Kidney Int 31: 1368–1376, 1987.PubMedCrossRefGoogle Scholar
  5. 5.
    Conwill DE, Granger DN, Cook BH, Johnson BB, Taylor AE: The effect of serum oncotic pressure on serum cholesterol levels: a study in “normal” and nephrotic subjects. South Med J 70: 456–458, 1977.PubMedCrossRefGoogle Scholar
  6. 6.
    Baxter JH, Goodman HC, Havel RJ: Serum lipid and lipoprotein alterations in nephrosis. J Clin Invest 39: 455–498, 1960.PubMedCrossRefGoogle Scholar
  7. 7.
    Nayak SS, Bhaskaranand N, Kamath KS, Baliga M, Venkatesh A, Aroor AR: Serum apolipoproteins A and B, lecithin:cholesterol acyl transferase activities and urinary cholesterol levels in nephrotic syndrome patients before and during steroid treatment. Nephron 54: 234–239, 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    Gherardi E, Rota E, Calandra S, Genova R, Tamborino A: Relationship among the concentrations of serum lipoproteins and changes in their chemical composition in patients with untreated nephrotic syndrome. Eur J Clin Invest 7: 563–570, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Joven J, Villabona C, Vilella E, Masana L, Albert! R, Vallès M: Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med 323: 579–584, 1990.PubMedCrossRefGoogle Scholar
  10. 10.
    Antikainen M, Holmberg C, Taskinen MR: Growth, serum lipoproteins and apoproteins in infants with congenital nephrosis. Clin Nephrol 38: 254–263, 1992.PubMedGoogle Scholar
  11. 11.
    Marshall JF, Apostolopoulos JJ, Brack CM, Howlett G J: Regulation of apolipoprotein gene expression and plasma high-density lipoprotein composition in experimental nephrosis. Biochim Biophys Acta 1042: 271–279, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Tarugi P, Calandra S, Chan L: Changes in apolipoprotein A- I mRNA level in the liver of rats with experimental nephrotic syndrome. Biochim Biophys Acta 868: 51–61, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Sun X, Jones H Jr, Joies JA, Van Toi A, Kaysen GA: Apolipoprotein gene expression in analbuminemic rats and in rats with Heymann nephritis. Am J Physiol 262 (Renal Fluid Electrolyte Physiol 31 ): F755 - F761, 1992.Google Scholar
  14. 14.
    Muls E, Rosseneu M, Daneeis R, Schurgers M, Boelaert J: Lipoprotein distribution and composition in the human nephrotic syndrome. Atherosclerosis 54: 225–237, 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Keane WF, St. Peter JV, Kasiske BL: Is the aggressive management of hyperlipidemia in nephrotic syndrome mandatory? Kidney Int Suppl 38: S134 - S141, 1992.PubMedGoogle Scholar
  16. 16.
    Moulin P, Appel GB, Ginsberg HN, Tall AR: Increased concentration of plasma cholesteryl ester transfer protein in nephrotic syndrome: role in dyslipidemia. J Lipid Res 33: 1817–1822, 1992.PubMedGoogle Scholar
  17. 17.
    Kostner GM, Avogaro P, Cazzolato G, Marth E, Bittolo-Bon G, Quinci GB: Lipoprotein Lp(a) and the risk for myocardial infarction. Atherosclerosis 38: 51–61, 1981.PubMedCrossRefGoogle Scholar
  18. 18.
    Utermann G: The mysteries of lipoprotein(a). Science 246: 904–910, 1989.PubMedCrossRefGoogle Scholar
  19. 19.
    Boerwinkle E, Menzel HJ, Kraft HG, Utermann G: Genetics of the quantitative Lp(a) lipoprotein trait. III. Contribution of Lp(a) glycoprotein phenotypes to normal lipid variation. Hum Genet 82: 73–78, 1989.PubMedCrossRefGoogle Scholar
  20. 20.
    Gavish D, Azrolan N, Breslow J: Plasma Lp(a) concentration is inversely correlated with the ratio of kringle IV/kringle V encoding domains in the apo(a) gene. J Clin Invest 84: 2021–2027, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Karâdi I, Romics, L, Pâlos G, Doman J, Kaszas I, Hesz A, Kostner GM: Lp(a) lipoprotein concentration in serum of patients with heavy proteinuria of different origin. Clin Chem 35: 2121–2123, 1989.PubMedGoogle Scholar
  22. 22.
    Short CD, Durrington PN, Mallick NP, Bhatnagar D, Hunt LP, MBewu A: Serum lipoprotein (a) in men with proteinuria due to idiopathic membranous nephropathy. Nephrol Dial Transplant 7 (Suppl 1): 109–113, 1992.PubMedGoogle Scholar
  23. 23.
    Thomas ME, Freestone A, Varghese Z, Persaud JW, Moorhead JF: Lipoprotein(a) in patients with proteinuria. Nephrol Dial Transplant 7: 597–601, 1992.PubMedGoogle Scholar
  24. 24.
    Guillausseau P-J, Peynet J, Chanson P, Legrand A, Altman J-J, Poupon J, N’Guyen M, Rousselet F, Lubetzki J: Lipopro-tein (a) in diabetic patients with and without chronic renal failure. Diabetes Care 15: 976–979, 1992.PubMedCrossRefGoogle Scholar
  25. 25.
    Wanner C, Rader D, Bartens W, Kramer J, Brewer HB, Schollmeyer P, Wieland H: Elevated plasma lipoprotein(a) in patients with the nephrotic syndrome. Ann Intern Med 119: 263–269, 1993.PubMedCrossRefGoogle Scholar
  26. 26.
    Mallick NP, Short CD: The nephrotic syndrome and ischaemic heart disease. Nephron 27: 54–57, 1981.PubMedCrossRefGoogle Scholar
  27. 27.
    Berlyne GM, Mallick NP: Ischemic heart disease as a complication of nephrotic syndrome. Lancet 2:399-100,1969.Google Scholar
  28. 28.
    Ordonez JD, Hiatt RA, Killebrew EJ, Fireman BH: The increased risk of coronary heart disease associated with nephrotic syndrome. Kidney Int 44: 638–642, 1993.PubMedCrossRefGoogle Scholar
  29. 29.
    Wass V, Cameron JS: Cardiovascular disease and the nephrotic syndrome: the other side of the coin. Nephron 27: 58–61, 1981.PubMedCrossRefGoogle Scholar
  30. 30.
    Zwaginga JJ, Koomans HA, Sixma JJ, Rabelink TJ: Thrombus formation and platelet-vessel wall interaction in the nephrotic syndrome under flow conditions. J Clin Invest 93: 204–211, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Schmitz PG, Kasiske BL, O’Donnell MP, Keane WF: Lipids and progressive renal injury. Semin Nephrol 9: 354–369, 1989.PubMedGoogle Scholar
  32. 32.
    Wellman KF, Volk BW: Renal changes in experimental hyper-cholesterolemia in normal and subdiabetic rabbits: I. Short term studies. Lab Invest 22: 36–18, 1970.Google Scholar
  33. 33.
    Drevon CA, Hoving T: The effects of cholesterol/fat feeding on lipid levels and morphological structures in liver, kidney and spleen in guinea pigs. Acta Pathol Microb Immunol Scand 85: 1–18, 1977.Google Scholar
  34. 34.
    Al-Shebeb T, Fröhlich J, Magil AB: Glomerular disease in hypercholesterolemic guinea pigs: a pathogenetic study. Kidney Int 33: 498–507, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    Kaplan R, Aynedjian HS, Bank N, Schlondorff D: Cholesterol feeding causes renal vasoconstriction via oxidized lipoprotein activation of thromboxane. Kidney Int 37:371 A, 1990.Google Scholar
  36. 36.
    Moorhead JF, Wheeler DC, Varghese Z: Glomerular structures and lipids in progressive renal disease. Am J Med 87: 12–20N, 1989.Google Scholar
  37. 37.
    Keane WF, Kasiske BL, O’Donnell MP: Lipids and progressive glomerulosclerosis: a model analogous to atherosclerosis. Am J Nephrol 8: 261–271, 1988.PubMedCrossRefGoogle Scholar
  38. 38.
    Grone HJ, Walli AK, Grone E, Kramer A, Clemens MR, Seidel D: Receptor mediated uptake of apo B and apo E rich lipoproteins by human glomerular epithelial cells. Kidney Int 37: 1449–1459, 1990.Google Scholar
  39. 39.
    Schmitz PG, O’Donnell MP, Kasiske BL, Keane WF: Dietary induced hypercholesterolemia elevates glomerular capillary pressure. Kidney Int 35: 473A, 1989.Google Scholar
  40. 40.
    Kasiske BL, O’Donnell MP, Cleary MP, Keane WF: Treatment of hyperlipidemia reduces glomerular injury in obese zucker rats. Kidney Int 33: 667–672, 1988.PubMedCrossRefGoogle Scholar
  41. 41.
    Diamond JR, Karnovsky MJ: Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation. Kidney Int 31: 671–677, 1987.CrossRefGoogle Scholar
  42. 42.
    Hanchak NA, Karnovsky MJ, Diamond JR: Cholestyramine lowers acute and recurrent proteinuria in chronic puromycin aminonucleoside nephrosis. Kidney Int 33: 376A, 1988.Google Scholar
  43. 43.
    Grond J, Weening JJ, Elema JD: Glomerular sclerosis in nephrotic rat. Lab Invest 51: 277–285, 1984.PubMedGoogle Scholar
  44. 44.
    Tolins JP, Stone BG, Raij L: Interactions of hypercholesterolemia and hypertension in initiation of glomerular injury. Kidney Int 41: 1254–1261, 1992.PubMedCrossRefGoogle Scholar
  45. 45.
    Lager DJ, Rosenberg BF, Shapiro H, Bernstein J: Lecithin cholesterol acyltransferase deficiency: ultrastructural examination of sequential renal biopsies. Mod Pathol 4: 331–335, 1991.PubMedGoogle Scholar
  46. 46.
    Suzaki K, Kobori S, Ueno S, Uehara M, Kayashima T, Takeda H, Fukuda S, Takahashi K, Nakamura N, Uzawa H: Effects of plasmapheresis on familial type III hyperlipoproteinemia associated with glomerular lipidosis, nephrotic syndrome and diabetes mellitus. Atherosclerosis 80: 181–189, 1990.PubMedCrossRefGoogle Scholar
  47. 47.
    Dillon JJ: The quantitative relationship between treated blood pressure and progression of diabetic renal disease. Am J Kidney Dis 22: 798–802, 1993.PubMedGoogle Scholar
  48. 48.
    Haffner SM, Gonzales C, Valdez RA, Mykkanen L, Hazuda HP, Mitchell BD, Monterrosa A, Stern MP: Is microalbuminuria part of the prediabetic state? The Mexico City Diabetes Study. Diabetologia 36: 1002–1006, 1993.PubMedCrossRefGoogle Scholar
  49. 49.
    Mulec H, Johnsen SA, Wiklund O, Bjorck S: Cholesterol: a renal risk factor in diabetic nephropathy? Am J Kidney Dis 22: 196–201, 1993.PubMedGoogle Scholar
  50. 50.
    Marsh JB: Lipoprotein metabolism in experimental nephrosis. J Lipid Res 25: 1619–1623, 1984.PubMedGoogle Scholar
  51. 51.
    Staprans I, Felts JM, Couser WG: Glycosaminoglycans and chylomicron metabolism in control and nephrotic rats. Metabolism 36: 496–501, 1987.PubMedCrossRefGoogle Scholar
  52. 52.
    Garber DW, Gottlieb B A, Marsh JB, Sparks CE: Catabolism of very low density lipo-proteins in experimental nephrosis. J Clin Invest 74: 1375–1383, 1984.PubMedCrossRefGoogle Scholar
  53. 53.
    Shafrir E, Brenner T: Lipoprotein lipid and protein synthesis in experimental nephrosis and plasmaphoresis. I. Studies in rat in vivo. Lipids 14: 695–702, 1979.PubMedCrossRefGoogle Scholar
  54. 54.
    Brenner T, Shafrir E: Lipoprotein lipid and protein synthesis in experimental nephrosis and plasmapheresis. II. Perfused rat liver. Lipids 15: 637–643, 1980.PubMedCrossRefGoogle Scholar
  55. 55.
    Calandra S, Gherardi F, Fainaru M, Guaitani A, Bartosek I: Secretion of lipoproteins, apolipoprotein A-I and apolipoprotein E by isolated and perfused liver of rat with experimental nephrotic syndrome. Biochim Biophys Acta 665: 331–338, 1981.CrossRefGoogle Scholar
  56. 56.
    Marsh JB, Drabkin DL: Experimental reconstruction of metabolic pattern of lipid nephrosis: key role of hepatic protein synthesis in hyperlipemia. Metabolism 9: 946–955, 1960.PubMedGoogle Scholar
  57. 57.
    Joven J, Masana L, Villabona C, Vilella E, Bargallo T, Trias M, Figueras M, Turner PR: Low density lipoprotein metabolism in rats with puromycin aminonucleoside-induced nephrotic syndrome. Metabolism 38:491-195, 1989.Google Scholar
  58. 58.
    Marsh JB, Sparks CE: Hepatic secretion of lipoproteins in the rat and the effect of experimental nephrosis. J Clin Invest 64: 1229–1237, 1979.PubMedCrossRefGoogle Scholar
  59. 59.
    Kekki M, Nikkilä EA: Plasma triglyceride metabolism in the adult nephrotic syndrome. Eur J Clin Invest 1: 345–351, 1971.PubMedCrossRefGoogle Scholar
  60. 60.
    McKenzie IFC, Nestel PJ: Studies on the turnover of triglyceride and esterified cholesterol in subjects with the nephrotic syndrome. J Clin Invest 47: 1685–1695, 1968.PubMedCrossRefGoogle Scholar
  61. 61.
    Vega GL, Grundy SM: Lovastatin therapy in nephrotic hyperlipidemia: effects on lipoprotein metabolism. Kidney Int 33: 1160–1168, 1988.PubMedCrossRefGoogle Scholar
  62. 62.
    Warwick GL, Caslake MJ, Boulton-Jones JM, Dagen M, Packard CJ, Shepherd J: Low-density lipoprotein metabolism in the nephrotic syndrome. Metabolism 39: 187–192, 1990.PubMedCrossRefGoogle Scholar
  63. 63.
    Pullinger CR, North JD, Teng BB, Rifici VA, Ronhild de Brito AE, Scott J: The apolipoprotein B gene is constitutively expressed in HepG2 cells: regulation of secretion by oleic acid, albumin, and insulin, and measurement of the mRNA half-life. J Lipid Res 30: 1065–1977, 1989.PubMedGoogle Scholar
  64. 64.
    Yamauchi A, Yamamoto S, Fukuhara Y, Orita Y, Kamada T, Nogouchi T, Tanaka T: Oncotic pressure regulates the levels of albumin (Alb) mRNA and apolipoprotein B (ApoB) mRNA in cultured rat hepatoma cells (H4IIE) (abstract). Kidney Int 35: 441A, 1989.Google Scholar
  65. 65.
    Soothill JA, Kark RM: The effects of infusions of salt-poor human serum albumin on serum cholesterol Cholinesterase, and albumin levels in healthy subjects and in patients ill with the nephrotic syndrome. Clin Res Proc 4: 140–141, 1956.Google Scholar
  66. 66.
    Davis RA, Engelhorn SC, Weinstein DB, Steinberg D: Very low density lipoprotein secretion by cultured rat hepa-tocytes: inhibition by albumin and other macromolecules. J Biol Chem 255: 2039–2045, 1980.PubMedGoogle Scholar
  67. 67.
    Moberly JB, Cole TG, Alpers DH, Schonfeld G: Oleic acid stimulation of apolipoprotein B secretion from HepG2 and Caco-2 cells occurs post-transcriptionally. Biochim Biophys Acta 1042: 70–80, 1990.PubMedCrossRefGoogle Scholar
  68. 68.
    Eisenberg E: High density lipoprotein metabolism. J Lipid Res 25: 1017–1058, 1984.PubMedGoogle Scholar
  69. 69.
    Dullaart RP, Gansevoort RT, Dikkeschei BD, de Zeeuw D, de Jong PE, Van Tol A: Role of elevated lecithin: cholesterol acyltransferase and cholesteryl ester transfer protein activities in abnormal lipoproteins from proteinuric patients. Kidney Int 44: 91–7, 1993.PubMedCrossRefGoogle Scholar
  70. 70.
    Agbedana ED, Yamamoto T, Moriwaki Y, Suda M, Takahashi S, Higashino K: Studies on abnormal lipid metabolism in experimental nephrotic syndrome. Nephron 64: 256–61, 1993.PubMedCrossRefGoogle Scholar
  71. 71.
    Sestak TL, Alavi N, Subbaiah PV: Plasma lipids and acyltransferase activities in experimental nephrotic syndrome. Kidney Int 36: 240–248, 1989.PubMedCrossRefGoogle Scholar
  72. 72.
    Warwick GL, Packard CJ, Demant T, Bedford DK, Boulton- Jones JM, Shepherd J: Metabolism of apolipoprotein B- containing lipoproteins in subjects with nephrotic-range proteinuria. Kidney Int 40: 129–138, 1991.PubMedCrossRefGoogle Scholar
  73. 73.
    Brown WV, Baginsky ML: Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun 46: 375–382, 1972.PubMedCrossRefGoogle Scholar
  74. 74.
    Felts JM, Itakura H, Crane RT: The mechanism of assimilation of constituents of chylomicrons, very low density lipoproteins and remnants—a new theory. Biochem Biophys Res Commun 6: 1467–1475, 1975.CrossRefGoogle Scholar
  75. 75.
    Kaysen GA, Mehendru L, Pan XM, Staprans I: Both peripheral chylomicron catabolism and hepatic uptake of remnants are defective in nephrosis. Am J Physiol 263: F335 - F341, 1992.PubMedGoogle Scholar
  76. 76.
    Davies RW, Staprans I, Hutchison FN, Kaysen GA: Proteinuria, not altered albumin metabolism, effects hyperlipidemia in the nephrotic rat. J Clin Invest 86: 600–605, 1990.PubMedCrossRefGoogle Scholar
  77. 77.
    Levy E, Ziv E, Bar-On H, Shafrir E: Experimental nephrotic syndrome: removal and tissue distribution of chylomicrons and very-low-density lipoproteins of normal and nephrotic origin. Biochim Biophys Acta 1043: 259–266, 1990.PubMedCrossRefGoogle Scholar
  78. 78.
    Kaysen GA, Pan XM, Couser WG, Staprans I: Defective lipolysis persists in hearts of rats with Heymann nephritis in the absence of nephrotic plasma. Am J Kidney Dis 22: 128–134, 1993.PubMedGoogle Scholar
  79. 79.
    Furukawa S, Hirano T, Mamo JCL, Nagano S, Takahashi T: Catabolic defect of triglyceride is associated with abnormal very-low-density lipoprotein in experimental nephrosis. Metabolism 39: 101–107, 1990.PubMedCrossRefGoogle Scholar
  80. 80.
    Vega GL, Grundy SM: Lovastatin therapy in nephrotic hyperlipidemia: effects on lipoprotein metabolism. Kidney Int 33: 1160–1168, 1988.PubMedCrossRefGoogle Scholar
  81. 81.
    Yamada M, Matsuda I: Lipoprotein lipase in clinical and experimental nephrosis. Clin Chim Acta 30: 787–794, 1970.PubMedCrossRefGoogle Scholar
  82. 82.
    Warwick GL, Packard CJ, Stewart JP, Watson TD, Burns L, Boulton-Jones JM, Shepherd J: Post-prandial lipoprotein metabolism in nephrotic syndrome. Eur J Clin Invest 22: 813–820, 1992.PubMedCrossRefGoogle Scholar
  83. 83.
    Kashyap ML, Srivastava LS, Hynd BA, Brady D, Perisutti F, Glueck CJ, Gartside PS: Apolipoprotein CII and lipoprotein lipase in human nephrotic syndrome. Atherosclerosis 35: 29–40, 1980.PubMedCrossRefGoogle Scholar
  84. 84.
    Chan MK, Persaud JW, Ramdial L, Varghese Z, Seveny P, Moorhead JF: Hyperlipidemia in untreated nephrotic syndrome, increased production or decreased removal? Clin Chem Acta 117: 317–323, 1981.CrossRefGoogle Scholar
  85. 85.
    Sparks CE, Tennenberg SD, Marsh JB: Catabolism of the apolipoproteins of HDL in control and nephrotic rats. Biochim Biophys Acta 665: 8–12, 1981.PubMedCrossRefGoogle Scholar
  86. 86.
    Mogensen CE, Christiansen CE: Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med, 311: 89–93, 1984.PubMedCrossRefGoogle Scholar
  87. 87.
    Tkac I, Molcanyiova A, Tkacova R, Takac M: Levels of cardiovascular risk factors in type 2 diabetes mellitus are dependent on the stage of proteinuria. J Intern Med 231 (2): 109–113, 1992.PubMedCrossRefGoogle Scholar
  88. 88.
    Don BR, Kaysen GA, Hutchison FN, Schambelan M: The effect of angiotensin-converting enzyme inhibition and dietary protein restriction in the treatment of proteinuria. Am J Kidney Dis 17: 10–17, 1991.PubMedGoogle Scholar
  89. 89.
    Goldbetz H, Black V, Shemesh O, Myers BD: Mechanism of the antiproteinuric effect of indomethacin in nephrotic humans. Am J Physiol 256 (Renal Fluid Electrolyte Physiol 25): F44 - F51, 1989.Google Scholar
  90. 90.
    Gansevoort RT, Heeg JE, Vriesendorp R, de Zeeuw D, de Jong PE: Antiproteinuric drugs in patients with idiopathic membranous glomerulopathy. Nephrol Dial Transplant 7 (Suppl l): 91–96, 1992.PubMedGoogle Scholar
  91. 91.
    Kaysen GA, Don B, Schambelan M: Proteinuria, albumin synthesis and hyperlipidaemia in the nephrotic syndrome. Nephrol Dial Transplant 6: 141–149, 1991.PubMedCrossRefGoogle Scholar
  92. 92.
    Keilani T, Schlueter WA, Levin ML, Batlle DC: Improvement of lipid abnormalities associated with proteinuria using fosinopril, an angiotensin-converting enzyme inhibitor. Ann Intern Med 118: 246–254, 1993.PubMedCrossRefGoogle Scholar
  93. 93.
    Zatz R, Dunn RB, Meyer TW, Anderson S, Rennke HG, Brenner BM: Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 77: 1925–1930, 1986.PubMedCrossRefGoogle Scholar
  94. 94.
    Bain R, Rohde R, Hunsicker LG, McGill J, Kobrin S, Lewis EJ: A controlled clinical trial of angiotensin-converting enzyme inhibition in type I diabetic nephropathy: study design and patient characteristics. The Collaborative Study Group. J Am Soc Nephrol 3 (Suppl): S97 - S103, 1992.PubMedGoogle Scholar
  95. 95.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 329: 1456–1462, 1993.PubMedCrossRefGoogle Scholar
  96. 96.
    Tan SY, Shapiro R, Franco R, Stockard H, Mulrow PJ: Indomethacin-induced prostaglandin inhibition with hyperkalemia. Ann Intern Med 90: 783–785, 1979.PubMedCrossRefGoogle Scholar
  97. 97.
    Tiggeler RGWL, Koene RAP, Wijdeveld PGAB: Inhibition of furosemide-induced natriuresis by indomethacin in patients with the nephrotic syndrome. Clin Sei Mol Med 52: 149–152, 1977.Google Scholar
  98. 98.
    Kaysen GA, Gambertoglio J, Jiminez I, Jones H, Hutchison FN: Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int 29: 572–577, 1986.PubMedCrossRefGoogle Scholar
  99. 99.
    Keutmann EH, Bassett SH: Dietary protein in hemorrhagic Bright’s disease. II. The effect of diet on serum proteins, proteinuria and tissue proteins. J Clin Invest 14: 871–888, 1935.PubMedCrossRefGoogle Scholar
  100. 100.
    Peters JP, Bulger HA: The relation of albuminuria to protein requirement in nephritis. Arch Intern Med 37: 153–185, 1926.CrossRefGoogle Scholar
  101. 101.
    Kaysen GA, al-Bander H, Martin VI, Jones H Jr, Hutchison FN: Branched-chain amino acids augment neither albuminuria nor albumin synthesis in nephrotic rats. Am J Physiol 260: R177 - R184, 1991.PubMedGoogle Scholar
  102. 102.
    Kaysen GA, Martin VI, Jones H Jr: Arginine augments neither albuminuria nor albumin synthesis caused by high-protein diets in nephrosis. Am J Physiol 263: F907–914, 1992.PubMedGoogle Scholar
  103. 103.
    Barsotti G, Morelli E, Cupisti A, Bertoncini P, Giovannetti S: A special, supplemented “vegan” diet for nephrotic patients. Am J Nephrol 11: 380–385, 1991.PubMedCrossRefGoogle Scholar
  104. 104.
    D’Amico G, Gentile MG: Influence of diet on lipid abnormalities in human renal disease. Am J Kidney Dis 22: 151–157, 1993.PubMedGoogle Scholar
  105. 105.
    D’Amico G, Gentile MG: Effect of dietary manipulation on the lipid abnormalities and urinary protein loss in nephrotic patients. Miner Electrolyte Metab 18: 203–206, 1992.PubMedGoogle Scholar
  106. 106.
    D’Amico G, Gentile MG, Manna G, Fellin G, Ciceri R, Cofano F, Petrini C, Lavarda F, Perolini S, Porrini M: Effect of vegetarian soy diet on hyperlipidaemia in nephrotic syndrome. Lancet 339 (8802): 1131–1134, 1992.PubMedCrossRefGoogle Scholar
  107. 107.
    Rabelink AJ, Hene RJ, Erkelens DW, Joles JA, Koomans HA: Partial remission of nephrotic syndrome in patients on long-term simvastatin. Lancet 335: 1045–1046, 1990.PubMedCrossRefGoogle Scholar
  108. 108.
    Kasiske BL, Velosa JA, Halstenson CE, La Belle P, Langendorfer A, Keane WF: The effects of lovastatin in hyperlipidemic patients with the nephrotic syndrome. Am J Kidney Dis 15: 8–15, 1990.PubMedGoogle Scholar
  109. 109.
    Moncada S, Flower R, Vane JR: Prostaglandins, prostacyclin, thromboxane A2 and leukotrienes. In: AG Gilman, LS Goodman, TW Rail, F Murad, eds, The Pharmacological Basis of Therapeutics. McMillan, New York, pp 660–673, 1985.Google Scholar
  110. 110.
    Sinclair HM: Essential fatty acids in perspective. Hum Nutr Clin Nutr 38: 245–260, 1984.PubMedGoogle Scholar
  111. 111.
    Klahr S, Buerkert J, Purkerson ML: Role of dietary factors in the progression of chronic renal disease. Kidney Int 24: 579–587, 1983.PubMedCrossRefGoogle Scholar
  112. 112.
    Prickett JD, Robinson DR, Steinberg AD: Dietary enrichment with the polyunsaturated fatty acids eicosapentaenoic acid prevents proteinuria and prolongs survival in NZBx- NZWfl mice. J Clin Invest 68: 556–559, 1981.PubMedCrossRefGoogle Scholar
  113. 113.
    Scharschmidt LA, Gibbons NB, McGarry L, Berger P, Axelord M, Janis R, Ko YH: Effects of dietary fish oil on renal insufficiency in rats with subtotal nephrectomy. Kidney Int 32: 700–709, 1987.PubMedCrossRefGoogle Scholar
  114. 114.
    Zoja C, Benigni A, Verroust P, Ronco P, Bertani T, Remuzzi G: Indomethacin reduces proteinuria in passive heymann nephritis in rats. Kidney Int 31: 1335–1343, 1987.PubMedCrossRefGoogle Scholar
  115. 115.
    Culp BR, Titus BG, Lands WEM: Inhibition of prostaglandin biosynthesis by eicosapentaenoic acid. Prostaglandin Med 3: 269–278, 1979.CrossRefGoogle Scholar
  116. 116.
    Remuzzi G, Imberti L, Rossini M, Morelli C, Carminati C, Cattaneo GM, Bertani T: Increased glomerular thromboxane synthesis as a possible cause of proteinuria in experimental nephrosis. J Clin Invest 75: 94–101, 1985.PubMedCrossRefGoogle Scholar
  117. 117.
    Spector A A, Kaduce TL, Figard PH, Norton KC, Hoak JC, Czervionke RL: Eicosapentaenoic acid and prostaglandin production by cultured human endothelial cells. J Lipid Res 24: 1595–1604, 1983.PubMedGoogle Scholar
  118. 118.
    Needleman P, Raz A, Minkes MS, Ferrendelli JA, Sprecher H: Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci USA 76: 944–948, 1979.PubMedCrossRefGoogle Scholar
  119. 119.
    von Schaky C, Fischer S, Weber PC: Long-term effects of dietary marine -3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans. J Clin Invest 76: 1626–1631, 1985.CrossRefGoogle Scholar
  120. 120.
    Higgs GA: The effects of dietary intake of essential fatty acids on prostaglandin and leukotriene synthesis. Proc Nutr Soc 44: 181–187, 1985.PubMedCrossRefGoogle Scholar
  121. 121.
    Ito Y, Yamashita W, Barcelli U, Pollak V: Dietary fat in experimental nephrotic syndrome: beneficial effects of fish oil on serum lipids and, indirectly, on the kidney. Life Sci 40: 2317–2324, 1987.PubMedCrossRefGoogle Scholar
  122. 122.
    Ito Y, Barcelli U, Yamashita W, Weiss W, Glas-Greenwalt P, Pollak V: Fish oil has beneficial effects on lipids and renal disease of nephrotic rats. Metabolism 37:352–357Google Scholar
  123. 123.
    Barcelli UO, Beach DC, Thompson M, Weiss M, Pollak VE: A diet containing n-3 and n-6 fatty acids favorably alters the renal phospholipids, eicosanoid synthesis and plasma lipids in nephrotic rats. Lipids 23: 1059–1063, 1988.PubMedCrossRefGoogle Scholar
  124. 124.
    Logan JL, Michael UF, Benson B: Dietary fish oil interferes with renal arachidonic acid metabolism in rats: correlations with renal physiology. Metabolism 41: 382–389, 1992.PubMedCrossRefGoogle Scholar
  125. 125.
    Clark WF, Parbtani A, Naylor CD, Levinton CM, Muirhead N, Spanner E, Huff MW, Philbrick DJ, Holub BJ: Fish oil in lupus nephritis: clinical findings and methodological implications. Kidney Int 44: 75–86, 1993.PubMedCrossRefGoogle Scholar
  126. 126.
    Tokoo M, Oguchi H, Terashima M, Tokunaga S, Miyasaka M, Hora K, Higuchi M, Yoshie T, Furuta S: Effects of pravastatin on serum lipids and apolipoproteins in hyperlipidemia of the nephrotic syndrome. Nippon Jinzo Gakkai Shi 34: 397–403, 1992.PubMedGoogle Scholar
  127. 127.
    Thomas ME, Harris KP, Ramaswamy C, Hattersley JM, Wheeler DC, Varghese Z, Williams JD, Walls J, Moorhead JF: Simvastatin therapy for hypercholesterolemic patients with nephrotic syndrome or significant proteinuria. Kidney Int 44: 1124–1129, 1993.PubMedCrossRefGoogle Scholar
  128. 128.
    Chan PC, Robinson JD, Yeung WC, Cheng IK, Yeung HW, Tsang MT: Lovastatin in glomerulonephritis patients with hyperlipidaemia and heavy proteinuria. Nephrol Dial Transplant 7: 93–99, 1992.PubMedGoogle Scholar
  129. 129.
    Golper TA, Illingworth DR, Morris CD, Bennett WM: Lovastatin in the treatment of multifactorial hyperlipidemia associated with proteinuria. Am J Kidney Dis 13:312–320Google Scholar
  130. 130.
    McCorpier CL, Jones PH, Suki WN, Lederer ED, Quinones MA, Schmidt SW, Young JB: Rhabdomyolysis and renal injury with lovastatin use. Report of two cases in cardiac transplant recipients. JAMA 260: 239–241, 1988.CrossRefGoogle Scholar
  131. 131.
    Marais GE, Larson KK: Rhabdomyolysis and acute renal failure induced by combination lovastatin and gemfibrozil therapy. Ann Intern Med 112: 228–230, 1990.PubMedCrossRefGoogle Scholar
  132. 132.
    O’Donnell MP, Kasiske BL, Kim Y, Atluru D, Keane WF: Lovastatin inhibits proliferation of rat mesangial cells. J Clin Invest 91: 83–87, 1993.PubMedCrossRefGoogle Scholar
  133. 133.
    O’Donnell MP, Kasiske BL, Kim Y, Atluru D, Keane WF: The mevalonate pathway: importance in mesangial cell biology and glomerular disease. Miner Electrolyte Metab 19: 173–179, 1993.PubMedGoogle Scholar
  134. 134.
    Modi KS, Schreiner GF, Purkerson ML, Klahr S: Effects of probucol in renal function and structure in rats with subtotal kidney ablation. J Lab Clin Med 120: 310–317, 1992.PubMedGoogle Scholar
  135. 135.
    Hirano T, Mamo JC, Nagano S, Sugisaki T: The lowering effect of probucol on plasma lipoprotein and proteinuria in puromycin aminonucleoside-induced nephrotic rats. Nephron 58: 95–100, 1991.PubMedCrossRefGoogle Scholar
  136. 136.
    Appel GB, Appel AS: Lipid-lowering agents in proteinuric diseases. Am J Nephrol 10 (Suppl 1): 110–115, 1990.PubMedCrossRefGoogle Scholar
  137. 137.
    Buckley MM, Goa KL, Price AH, Brogden RN: Probucol. A reappraisal of its pharmacological properties and therapeutic use in hypercholesterolaemia. Drugs 37: 761–800, 1989.PubMedCrossRefGoogle Scholar
  138. 138.
    Iida H, Izumino K, Asaka M, Fujita M, Nishino A, Sasayma S: Effect of probucol on hyperlipidemia in patients with nephrotic syndrome. Nephron 47: 280–283, 1987.PubMedCrossRefGoogle Scholar
  139. 139.
    Valeri A, Gelfand J, Blum C, Appel GB: Treatment of the hyperlipidemia of the nephrotic syndrome: a controlled trial. Am J Kidney Dis 8: 388–96, 1986.PubMedGoogle Scholar
  140. 140.
    Carew TE, Schwenke DC, Steinberg D: Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Nat Acad Sei USA 84: 7725–7729, 1987.CrossRefGoogle Scholar
  141. 141.
    Kesaniemi YA, Grundy SM: Influence of probucol on cholesterol and lipoprotein metabolism in man. J Lipid Res 25: 780–790, 1984.PubMedGoogle Scholar
  142. 142.
    Groggel GC, Cheung AK, Ellis-Benigni K, Wilson DE: Treatment of nephrotic hyperlipoproteinemia with gemfibrozil. Kidney Int 36: 266–271, 1989.PubMedCrossRefGoogle Scholar
  143. 143.
    Grundy SM, Vega GL: Rationale and management of hyperlipidemia of the nephrotic syndrome. Am J Med 87 (5N): 3N - 11N, 1989.PubMedGoogle Scholar
  144. 144.
    Pierides AM, Alvarez-Ude F, Kerr DN: Clofibrate-induced muscle damage in patients with chronic renal failure. Lancet 2 (7948): 1279–1282, 1975.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • George A. Kaysen
    • 1
  1. 1.Division of Nephrology, Department of Veterans Affairs Northern California System of ClinicsUniversity of California, Davis School of MedicineSacramentoUSA

Personalised recommendations