Inherited Renal Tubular Disorders

  • Donald L. Batisky
  • Russell W. Chesney


A number of clinical syndromes have been described that have as their basic foundation a defect in some transport function of the renal tubule (Table 1), and several of them are inherited. Using this model, one is able to define conditions in which single or multiple substances are lost, in which ions or organic solutes are lost, and in which the whole-body pools of these substances are altered due to excessive urinary excretion. The basic pathophysiologic mechanisms underlying these transport defects are described in detail elsewhere (1–4). The purpose of this chapter is to describe current therapy of these conditions.


Renal Tubular Acidosis Fanconi Syndrome Hypophosphatemic Rickets Distal Renal Tubular Acidosis Hyperchloremic Metabolic Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scriver CR, Chesney RW, McInnes RR: Genetic aspects of renal tubular transport. Diversity and topology of carriers. Kidney Int 9: 149–171, 1976.PubMedCrossRefGoogle Scholar
  2. 2.
    Schneider JA: Hereditary disorders of tubular function. In: BM Tune, SA Mendoza, eds, Pediatric Nephrology. Contemporary Issues in Nephrology, 12th ed. Churchill-Livingston, New York, pp 85–109, 1984.Google Scholar
  3. 3.
    Chesney RW: Defects of renal tubular transport. In: SG Massry, R Glassock, eds, Textbook of Nephrology. Elsevier, North Holland, pp 3.178–3. 190, 1983.Google Scholar
  4. 4.
    Chesney RW, Friedman AL: Isolated renal tubular disorders. In: RW Schrier, CW Gottschalk, eds, Diseases of the Kidney, 4th ed. pp 663–688, 1988.Google Scholar
  5. 5.
    Scriver CR: Familial iminoglycinuria. In: JB Stanbury, JB Wyngaarden, DS Frederickson, JL Goldstein, MS Brown, eds, The Metabolic Basis of Inherited Disease, 5th ed. McGraw-Hill, New York, pp 1792–1803, 1983.Google Scholar
  6. 6.
    Melana SB, Dallaire L, Lemieux B, Robitaille P, Porter M: Dicarboxylic aminoaciduria: an inborn error of amino acid conservation. J Pediatr 94: 422–427, 1977.Google Scholar
  7. 7.
    Foreman JW, Segal S: Aminoacidurias. In: HC Gorick, VM Buckalew Jr, eds, Renal Tubular Disorders. Pathophysiology, Diagnosis and Management. Marcel Dekker, New York, pp 131–157, 1985.Google Scholar
  8. 8.
    Segal S, Thier SO: Cystinuria. In: JB Stanbury, JB Wyngaarden, DS Frederickson, JL Goldstein, MS Brown, eds, The Metabolic Basis of Inherited Disease, 5th ed. McGraw-Hill, New York, pp 1174–1791, 1983.Google Scholar
  9. 9.
    Pak CYC, Fuller CJ: Assessment of cystine solubility in urine and of heterogeneous nucleation. J Urol 129: 1066–1074, 1983.PubMedGoogle Scholar
  10. 10.
    Pak CYC, Fuller C, Sakhaee K, Zerwekh JE, Adams BV: Management of cystine nephrolithiasis with alphamercaptopropionyl-glycine. J Urol 136: 1003–1008, 1986.PubMedGoogle Scholar
  11. 11.
    Harbar JA, Cusworth DC, Lawes LC, Wrong OM: Comparison of 2-mercaptopropionyl-glycine and D-penicillamine in the treatment of cystinuria. J Urol 136: 146–149, 1986.PubMedGoogle Scholar
  12. 12.
    Rodman JS, Blackburn P, Williams JJ, Brown A, Poapiaxhil MA, Peterson CM: The effect of dietAry protein on cystine excretion in patients with cystinuria. Clin Nephrol 22: 273278, 1984.Google Scholar
  13. 13.
    Personal communication, Mission Pharmacal Company.Google Scholar
  14. 14.
    Skovby F, Rosenberg LE, Thiers SO: No effect of L-glutamine on cystinuria. N Engl J Med 302: 236–237, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Jaeger P, Portmann L, Saunders A, Rosenberg LE, Thier SO: Anticystinuric effects of glutamine and of dietary sodium restriction. N Engl J Med 315: 1120–1123, 1986.PubMedCrossRefGoogle Scholar
  16. 16.
    Al-Hariri SO, EL-Zouki AY: Captopril: a new treatment for cystinuria in children. Pediatr Nephrol 3: C196, 1989.Google Scholar
  17. 17.
    Martin X, Salas M, Labeeuw M, Pozet N, Gelet A, Dubernard JM: Cystine stones: the impact of new treatment. Br J Urol 68: 234 239, 1991.Google Scholar
  18. 18.
    Coulthard M, Richardson J, Fleetwood A: Captopril is not clinically useful in reducing the cystine load in cystinuria or cystinosis. Pediatr Nephrol 5: 98, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    Bass RB, Beard JH, Cooner WH, Mosley BR, Pond HS, Rutherford CL Jr: Percutaneous ultrasonic lithotripsy in the community hospital. J Urol 133: 1586–1587, 1985.Google Scholar
  20. 20.
    Brannen GE, Bush WE: Percutaneous ultrasonic versus surgical removal of kidney stones. Surg Gynecol Obstet 161: 473478, 1985.Google Scholar
  21. 21.
    Grantham JR, Millner MR, Kande JV, Findlayson B, Hunter PT, Newman RC: Renal stone disease treated with extracorporeal shock wave lithotripsy: short term observations in 100 patients. Radiology 158: 203–206, 1986.PubMedGoogle Scholar
  22. 22.
    Wen SF: Glycosurias. In: HC Gorick, VM Buckalew Jr, eds, Renal Tubular Disorders. Pathophysiology, Diagnosis and Management. Marcel Dekker, New York, pp 131–157, 1985.Google Scholar
  23. 23.
    McSherry E: Renal tubular acidosis in childhood. Kidney Int 20: 799–809, 1981.PubMedCrossRefGoogle Scholar
  24. 24.
    Batlle DC, Kurtzman NA: The defect in distal (Type I) renal tubular acidosis. In: HC Gorick, VM Buckalew Jr, eds, Renal Tubular Disorders. Pathophysiology, Diagnosis and Management. Marcel Dekker, New York, pp 281–305, 1985.Google Scholar
  25. 25.
    Buckalew VM Jr, Carvana RJ: The pathophysiology of distal (Type I) renal tubular acidosis. In: HC Gorick, VM Buckalew Jr, eds, Renal Tubular Disorders. Pathophysiology, Diagnosis and Management. Marcel Dekker, New York, pp 357–386, 1985.Google Scholar
  26. 26.
    McSherry E; Acidosis and growth in nonuremic renal disease. Kidney Int 14: 349–354, 1978.PubMedCrossRefGoogle Scholar
  27. 27.
    Brenner RJ, Spring DB, Sebastian A, McSherry EM, Genant HK, Palubinskas AJ, Morris RC Jr: Incidence of radiographically evident bone disease, nephrocalcinosis, and nephrolithiasis in various types of renal tubular acidosis. N Engl J Med 307: 217–222, 1982.PubMedCrossRefGoogle Scholar
  28. 28.
    Buckalew VM Jr, Purvis ML, Shulman MG, Herndon CN, Rudman D: Hereditary renal tubular acidosis. Report of 64 member kindred with variable clinical expression including idiopathic hypercalciuria. Medicine (Baltimore) 53: 229–254, 1954.Google Scholar
  29. 29.
    Edelmann CM Jr: Isolated proximal (Type II) renal tubular acidosis. In: HC Gorick, VM Buckalew Jr, eds, Renal Tubular Disorders. Pathophysiology, Diagnosis and Management. Marcel Dekker, New York, pp 261–280, 1985.Google Scholar
  30. 30.
    Donckerwolcke RA, Van Stekelenburg GJ, Tiddens HA: Therapy of bicarbonate-losing renal tubular acidosis. Arch Dis Child 45: 774–779, 1970.PubMedCrossRefGoogle Scholar
  31. 31.
    Boyer M, Proesmans W, Royer P: La titration des bicarbonates chez l’enfant normal et au cours de diveres nephropathies. Rev Etudes Clin Biol 14: 556–568, 1969.Google Scholar
  32. 32.
    Sebastian A, Schambelain M, Hulter HN, Maher T, Kurtz I, Biglieri EG, Rector FC Jr, Morris RC Jr: Hyperkalemic renal tubular acidosis. In: HC Gorick, VM Buckalew Jr, eds, Renal Tubular Disorders. Pathophysiology, Diagnosis and Management. Marcel Dekker, New York, pp 307–356, 1985.Google Scholar
  33. 33.
    Batlle DC, Arruda JAL, Kurtzman NA: Hyperkalemic renal tubular acidosis associated with obstructive uropathy. N Engl J Med 304: 373–380, 1981.PubMedCrossRefGoogle Scholar
  34. 34.
    Portale AA, Booth BE, Morris RC Jr: Renal tubular acidosis. In: MA Holliday, TM Barratt, RL Vernier, eds, Pediatric Nephrology, 2nd ed. Williams and Wilkins, Baltimore, p 618, 1987.Google Scholar
  35. 35.
    Cheek DB, Perry JW: A salt wasting syndrome in infancy. Arch Dis Child 33: 252–256, 1958.PubMedCrossRefGoogle Scholar
  36. 36.
    Chesney RW: Renal tubular disorders. In: HC Gonick, ed, Contemporary Nephrology, vol. 11. Yearbook Medical Publishers, Chicago, pp 107–138, 1988.Google Scholar
  37. 37.
    Armanini D, Kuhnle U, Strasser T, Dorr H, Butenandt T, Weber PC, Stockigt JR, Pearce P, Funder JW: Aldosteronereceptor deficiency in pseudohypoaldosteronism. N Engl J Med 313: 1178–1181, 1985.PubMedCrossRefGoogle Scholar
  38. 38.
    Oberfield SE, Levine LS, Carey RM, Bejark B, New MI: Pseudohypoaldosteronism: multiple target organ unresponsiveness to mineralocorticoid hormones. J Clin Endocrinol Metab 48: 228–234, 1979.PubMedCrossRefGoogle Scholar
  39. 39.
    DeFronzo RA: Hyperkalemia and hyporeninemic hypoaldosteronism. Kidney Int 29: 186–202, 1980.Google Scholar
  40. 40.
    Schambelain M, Sebastian A, Biglieri EG: Prevalence, pathogenesis and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int 17: 89–94, 1980.CrossRefGoogle Scholar
  41. 41.
    Massry SG, Fredley RM, Coburn JW: Excretion of calcium and phosphate: physiology of their renal handling and relation to clinical medicine. Arch Intern Med 131: 828–859, 1973.PubMedCrossRefGoogle Scholar
  42. 42.
    Chesney RW: Phosphaturic syndromes. In: HC Gorick, VM Buckalew Jr, eds, Renal Tubular Disorders. Pathophysiology, Diagnosis and Management. Marcel Dekker, New York, pp 201–238, 1985.Google Scholar
  43. 43.
    Tenenhouse HS: Effect of age and the X-linked hyp/y muta tion on renal adaptation to vitamin D and calcium deficiency. Can Biochem Physiol 81A: 367–371, 1985.CrossRefGoogle Scholar
  44. 44.
    Tenenhouse HS: Abnormal renal mitochondrial 25- hydroxyvitamin D-lalpha-hydroxylase activity in the vitamin D and calcium deficient X-linked hyp/y mouse. Endocrinol ogy 113: 816–818, 1983.CrossRefGoogle Scholar
  45. 45.
    Chesney RW, Mazess RB, Rose P, Hamstra AJ, DeLuca HF, Breed AL: Long-term inluence of calcitriol (1,25 dihy droxyvitamin D) and supplemental phosphate in X-linked hypophosphatemic rickets. Pediatrics 71: 559–567, 1983.PubMedGoogle Scholar
  46. 46.
    Latta K, Hisano S, Chan JCM: Therapeutics of X-linked hypophosphatemic rickets. Pediatr Nephrol 7: 744–748, 1993.PubMedCrossRefGoogle Scholar
  47. 47.
    Marie PJ, Glorieux FM: Histomorphometric study of bone remodeling in hypophosphatemic vitamin D-resistant rickets. Metab Bone Dis Rel Res 3: 31–39, 1981.CrossRefGoogle Scholar
  48. 48.
    Glorieux FM, Scriver CR, Reade TM, Goldman H, Roseborough A: Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemic rickets. N Engl J Med 287: 481–485, 1972.PubMedCrossRefGoogle Scholar
  49. 49.
    Polisson RB, Martinez SJ, Khoury M, Harrell RM, Lyles KW, Friedman N, Harrelson JM, Reisner E, Drezner MK: Calcification of enthesis associated with X-linked hypophosphatemic osteomalacia. N Engl J Med 313: 1–6, 1985.PubMedCrossRefGoogle Scholar
  50. 50.
    Wilson DM, Lee PDK, Morris AH, Reiter EO, Gertner JM, Marcus R, Quarmby VE, Rosenfeld RG: Growth hormone therapy in hypophosphatemic rickets. Am J Dis Child 145: 1165–1170, 1991.PubMedGoogle Scholar
  51. 51.
    Scriver CR: On phosphate transport and genetic screening, “understanding backward—living forward” in human genetics: William Allen Memorial Award Address. Am J HumGenet 31: 243–248, 1979.PubMedGoogle Scholar
  52. 52.
    Bijvoet OLM, Walton RJ: Nomogram for derivation of renal threshold phosphate concentration. Lancet 2: 309, 1979.Google Scholar
  53. 53.
    Terder M, Modai D, Samuel R, Arie R, Malabe A, Bab 1, Gabizon D, Lieberman VA: Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med 312: 611–616, 1985.CrossRefGoogle Scholar
  54. 54.
    Harrison HE, Harrison HC: Rickets and osteomalacia. In: Major Problems in Clinical Pediatrics: Disorders of Calcium and Phosphate Metabolism in Childhood and Adolescence, vol. 20. WB Saunders, Philadelphia, pp 141–256, 1979.Google Scholar
  55. 55.
    Drezner MK, Feinglos MN: Osteomalacia due to 1,25 dihydroxycholecalciferol deficiency. J Clin Invest 60: 1046 1053, 1977.Google Scholar
  56. 56.
    Dent CE, Stamp TCB: Hypophosphatemic osteomalacia presenting in adults. Q J Med 40: 303–329, 1971.PubMedGoogle Scholar
  57. 57.
    Lundberg E, Bergengren H, Lundquist B: Mild phosphate diabetes in adults. Acta Med Scand 204: 93–96, 1978.PubMedCrossRefGoogle Scholar
  58. 58.
    Dent CE, Friedman M: Hypophosphatemic osteomalacia with complete recovery. Br Med J 1: 1676–1679, 1964.PubMedGoogle Scholar
  59. 59.
    Gitelman HJ, Graham JB, Welt LG: A new familial disorder characterised by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79: 221, 1966.Google Scholar
  60. 60.
    Booth BE, Johanson A: Hypomagnesemia due to renal tubular defect in reabsorption of magnesium. J Pediatr 84:350 354, 1974. Inherited Renal Tubular Disorders 683Google Scholar
  61. 61.
    Evans RA, Carter JN, George CRP, et al.: The congenital magnesium-losing kidney. Q J Med 197: 39–52, 1981.Google Scholar
  62. 62.
    Agus ZS, Wasserstein A, Goldfarb S: Disorders of calcium and magnesium homeostasis. Am J Med 72: 473–488, 1982.PubMedCrossRefGoogle Scholar
  63. 63.
    Carpenter TO, Key LL Jr: Disorders of the metabolism of calcium, phosphorus, and other divalent ions. In: I Ichikawa, ed, Pediatric Textbook of Fluids and Electrolytes. Williams and Wilkins, Baltimore, pp 237–268, 1990.Google Scholar
  64. 64.
    Rude RK, Oldham SB, Singer FR: Functional hypopara thyroidism and parathyroid hormone end-organ resistance in human magnesium deficiency. Clin Endocrinol 5: 209–214, 1976.CrossRefGoogle Scholar
  65. 65.
    Duran MJ, Borst GC, Osburne RC, Eil C: Concurrent renal hypomagnesemia and hypoparathyroidism with normal parathormone responsiveness. Am J Med 76: 151–154, 1984.PubMedCrossRefGoogle Scholar
  66. 66.
    Ralston S, Boyle IT, Cowan RA, Creau GP, Jenkins A, Thomson WS: PTH and vitamin D responses during treatment of hypomagnesemic hypoparathyroidism. Acta Endocrinol 103: 535–538, 1983.Google Scholar
  67. 67.
    Rude RK, Adams JS, Ryzen E, Endres DB, Niimi H, Horst RL, Haddad JG, Singer FR: Low serum concentrations of 1,25 dihydroxyvitamin D in human magnesium deficiency. J Clin Endocrinol Metab 61: 933–940, 1985.PubMedCrossRefGoogle Scholar
  68. 68.
    Zelikovic I, Dabbagh S, Friedman AL, Goelzer ML, Chesney RW: Severe renal osteodystrophy without elevated serum immunoreactive parathyroid hormone concentrations in hypomagnesemia due to renal magnesium wasting. Pediatrics 79: 403–409, 1987.PubMedGoogle Scholar
  69. 69.
    Allen DB, Friedman AL, Greer FR, Chesney RW: Hypomagnesemia masking the appearance of elevated parathyroid hormone concentrations in familial pseudo hypoparathyroidism. Am J Med Genet 31: 153–158, 1988.Google Scholar
  70. 70.
    Brewer ED: The Fanconi syndrome: clinical disorders. In: HC Gorick, VM Buckalew Jr, eds, Renal Tubular Disorders.Pathophysiology, Diagnosis and Management. Marcel Dekker, New York, pp 475–544, 1985.Google Scholar
  71. 71.
    Chesney RW: Etiology and pathogenesis of the Fanconi syn drome. Miner Electrolyte Metab 4: 303–316, 1980.Google Scholar
  72. 72.
    Wallis LA, Engle RL: The adult Fanconi syndrome II: Review of eighteen cases. Ann J Med 22: 13–23, 1957.CrossRefGoogle Scholar
  73. 73.
    Gahl WA: Cystinosis coming of age. Adv Pediatr 33: 95–126, 1986.PubMedGoogle Scholar
  74. 74.
    Schneider JA: Therapy of cystinosis. N Engl J Med 313: 1473–1474, 1985.PubMedCrossRefGoogle Scholar
  75. 75.
    Gahl WA, Thoene JG, Schneider JA, Mendoza SA, Schulman JG: Results of the national collaborative cysteamine study: improvement in linear growth and slowed progression of renal failure. N Engl J Med 366: 971–977, 1987.CrossRefGoogle Scholar
  76. 76.
    Gahl WA, Schneider JA, Thoene JG, Chesney RW: Course of nephropathic cystinosis after 10 years of age. J Pediatr 109: 605–608, 1986.PubMedCrossRefGoogle Scholar
  77. 77.
    Bennardini I, Rizzo WB, Dalakas M, Berner J, Gahl WA: Plasma and muscle free carnitine deficiency due to renal Fanconi syndrome. J Clin Invest 75: 1124–1130, 1985.CrossRefGoogle Scholar
  78. 78.
    Abassi V, Lowe CU, Calcagno PL: Oculo-cerebro-renal syndrome. A review. Am J Dis Child 115: 145–168, 1968.Google Scholar
  79. 79.
    Segal S: Disorders of galactose metabolism. In: JB Stanbury, JB Wyngaarden, DS Frederickson, JL Goldstein, MS Brown, eds, The Metabolic Basis of Inherited Disease, 5th ed. McGraw-Hill, New York, pp 166–191, 1983.Google Scholar
  80. 80.
    Lindbald B, Lindstedt S, Steen G: On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci USA 74: 46414645, 1977.Google Scholar
  81. 81.
    Scriver CR, Silverberg M, Clow CL: Hereditary tyrosinemia and tyrosyluria: clinical report of four patients. Can Med Assoc J 97: 1047–1050, 1967.PubMedGoogle Scholar
  82. 82.
    Steinmann B, Gitzelmann R: The diagnosis of hereditary fructose intolerance. Hell, Paediatr Acta 36: 297–316, 1981.Google Scholar
  83. 83.
    Chesney RW, Kaplan BS, Teitel D, Colle E, McInnes RR, Goldman M, Scriver CR: Metabolic abnormalities in the idiopathic Fanconi syndrome: studies of carbohydrate metabolism in two patients. Pediatrics 67: 113–118, 1981.PubMedGoogle Scholar
  84. 84.
    Brodehl J, Gelessen K, Hagge W: The Fanconi syndrome in hepatorenal glycogen storage disease in progress. In: G Peiters, F Roch-Rainel, eds, Nephrology. Springer-Verlag, New York, pp 241–243, 1969.Google Scholar
  85. 85.
    Strickland GT, Lew ML: Wilson’s disease, clinical and laboratory manifestations in 40 patients. Medicine (Baltimore) 54: 113–137, 1975.Google Scholar
  86. 86.
    Beam AG, Yu TF, Gutman AB: Renal function in Wilson’s disease. J Clin Invest 36: 1107–1114, 1957.CrossRefGoogle Scholar
  87. 87.
    Walshe JM: Effect of penicillamine on failure of renal acidification in Wilson’s disease. Lancet 1: 775–779, 1985.Google Scholar
  88. 88.
    Walshe JM: Treatment of Wilson’s disease with tirentine (trithlene tetramine) dihydrochloride. Lancet 1: 643–647, 1982.PubMedCrossRefGoogle Scholar
  89. 89.
    Maldonado JE, Velosa JA, Kyle RA, Wagoner RA, Molley KE, Salassa RM: Fanconi syndrome in adults. A manifestation of a latent form of myeloma. Am J Med 58: 354–364, 1975.PubMedCrossRefGoogle Scholar
  90. 90.
    Burke EC, Holley KE, Stickler GB: Familial nephrotic syndrome with nephrocalcinosis and tubular dysfunction. J Pediatr 82: 202–206, 1973.PubMedCrossRefGoogle Scholar
  91. 91.
    Bergstein JM, Litman N: Interstitial nephritis with anti-tubular basement membrane antibody. N Engl J Med 292: 875–878, 1975.PubMedCrossRefGoogle Scholar
  92. 92.
    Friedman AL, Chesney RW: Fanconi’s syndrome in renal transplantation. Am J Nephrol 1: 45–47, 1981.PubMedCrossRefGoogle Scholar
  93. 93.
    Mavromatis F: Tetracycline nephropathy. JAMA 193: 10: 191194, 1965.Google Scholar
  94. 94.
    Otter J, Vis HL: Acute reversible renal tubular dysfunction following intoxication with methyl-3-chromone. J Pediatr 73: 422–425, 1968.CrossRefGoogle Scholar
  95. 95.
    Chrisolm JJ: Increased lead absorption and lead poisoning. In: RE Behrman, VC Vaughn, eds, Nelson Textbook of Pediatrics, 11th ed. WB Saunders, Philadelphia, pp 1801–1804, 1983.Google Scholar
  96. 96.
    Hoakawa Y, Abe J, Tamaka S: Bone changes in experimental chronic cadmium poisoning. Arch Environ Health 26: 24 1244, 1973.Google Scholar
  97. 97.
    Chesney RW, Harrison HE: Fanconi syndrome following bowel surgery and hepatitis reversed by 25hydroxycholecalciferol. J Pediatr 86: 857–861, 1975.PubMedCrossRefGoogle Scholar
  98. 98.
    Gill JR Jr: Bartter’s syndrome. In: HC Gorick, VM Buckalew Jr, eds, Renal Tubular Disorders. Pathophysiology, Diagnosis and Management. Marcel Dekker, New York, pp 457–473, 1985.Google Scholar
  99. 99.
    Tomko DJ, Yeh BPY, Falls WF Jr: Bartter’s syndrome. Study of a 52 year old man with evidence for a defect in proximal tubular sodium reabsorption and comments on therapy. Am J Med 61: 111–117, 1976.PubMedCrossRefGoogle Scholar
  100. 100.
    Pererra RR, Von Wersch J: Inheritance of Bartter syndrome. Am J Med Genet 15: 79–84, 1983.CrossRefGoogle Scholar
  101. 101.
    White MG: Bartter’s syndrome. A manifestation of renal tubular defects. Arch Intern Med 129: 41–47, 1972.PubMedCrossRefGoogle Scholar
  102. 102.
    Gill JR, Frohlich JC, Bowden RE, Taylor AA, Keiser HR, Seyberth HV, Oates JA, Bartter FC: Bartter’s syndrome: a disorder characterized by high urinary prostaglandins and dependence of hypereninemia on prostaglandin synthesis. Am J Med 61: 43–51, 1976.PubMedCrossRefGoogle Scholar
  103. 103.
    Halushka PV, Wohltmann H, Privitera PJ, Hurwitz G, Margolius HS: Bartter’s syndrome: urinary prostaglandin E-like material and kallikrein: indomethacin effects. Ann Intern Med 87: 281–286, 1977.PubMedCrossRefGoogle Scholar
  104. 104.
    Veldhius JD, Bardin CW, Demers LM: Metabolic mimicry of Bartter’s syndrome to covert vomiting. Am J Med 66: 36 1363, 1979.Google Scholar
  105. 105.
    Stein JH: The pathogenic spectrum of Bartter’s syndrome. Kidney Int 28: 85–93, 1985.PubMedCrossRefGoogle Scholar
  106. 106.
    Seyberth HW, Rascher W, Schweer H, Kuhl PG, Mehls O, Scharer K: Congenital hypokalemia with hypercalcemia in preterm infants. A hyperprostaglandinuric tubular syndrome different from Bartter syndrome. J Pediatr 107: 694–698, 1985.PubMedCrossRefGoogle Scholar
  107. 107.
    Hornuch I, Huet de Barochez Y, Bariety J, Branca GF, Vigeral P, Girard JF, Kazatchkine M, DeGennes JL, Truffert J, Bocquet L, Paris M: Bartter’s syndrome with normal sodium chloride reabsorption during indomethacin treatment. Nephron 46: 137–143, 1987.CrossRefGoogle Scholar
  108. 108.
    Gullner HC, Bartter FC, Gill JR Jr, Bickman PS, Wilson CB, Tiwari JL: A sibship with hypokalemic alkalosis and renal proximal tubulopathy. Arch Intern Med 143: 1534–1537, 1983.PubMedCrossRefGoogle Scholar
  109. 109.
    Fishman MP, Teifer N, Zia P, Speckart P, Golub M, Rude R: Role of prostaglandins in the pathogenesis of Bartter’s syndrome. Am J Med 60: 785–797, 1976.CrossRefGoogle Scholar
  110. 110.
    Griffing GT, Melby JC: The therapeutic use of a new potassium-sparing diuretic, amiloride, and converting enzyme inhibitor, MK 421, in preventing hypokalemia associated with primary and secondary hyperaldosteronism. Clin Exp Hypertens A5: 779–801, 1983.CrossRefGoogle Scholar
  111. 111.
    Liddle GW, Bledsow T, Coppage WS Jr: A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 76: 199, 1963.Google Scholar
  112. 112.
    Wang C, Chan TK, Yeung RTT, et al.: The effect of triamterene and sodium intake on renin aldosterone and erythrocyte sodium transport in Liddle’s syndrome. J Clin Endocrinol Metab 52: 1027, 1981.PubMedCrossRefGoogle Scholar
  113. 113.
    Botero-Velez M, Curtis JJ, Warnock DG: Brief report: Liddle’s syndrome revisited-a disorder of sidum reabsorption in the distal tubule. N Engl J Med 330: 178–181, 1994.PubMedCrossRefGoogle Scholar
  114. 114.
    Rodriguez-Soriano J, Valle A, Dominguez MJ: “Chloride-shunt” syndrome: an overlooked cause of renal hypercalciuria. Pediatr Nephrol 3: 113–121, 1989.PubMedCrossRefGoogle Scholar
  115. 115.
    Gordon RD, Geddes RA, Dawsey CGK, O’Halloran MW: Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med 4: 287–294, 1970.Google Scholar
  116. 116.
    Gordon RD: Syndrome of hypertension and hyperkalaemia with normal glomerular filtration rate. Hypertension 8: 93102, 1986.CrossRefGoogle Scholar
  117. 117.
    Spitzer A, Edelmann CM Jr, Goldberg LD, Henneman PH: Short stature, hyperkalemia and acidosis: a defect in renal transport of potassium. Kidney hit 3: 251–257, 1973.CrossRefGoogle Scholar
  118. 118.
    Weinstein SF, Allen DME, Mendoza SA: Hyperkalemia, acidosis and short stature associated with a defect in renal potassium excretion. J Pediatr 85: 355–358, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Donald L. Batisky
    • 1
  • Russell W. Chesney
    • 1
  1. 1.Division of Pediatric Nephrology, Department of PediatricsThe University of Tennessee, Memphis, LeBonheur Children’s Medical CenterMemphisUSA

Personalised recommendations