Fluid and Electrolyte Disorders in the Surgical Patient

  • Khalil U. Rahman
  • Wadi N. Suki


The number of surgical procedures that are done each year now totals in the tens of millions (1). As medical science continues to advance, new surgical procedures are being developed, older procedures are becoming more intricate, and the number of the so-called high-risk patients receiving surgery is increasing. These high-risk patients include individuals with preexisting renal and cardiac abnormalities. Consequently, the chances of witnessing renal, fluid, and electrolyte derangements in surgical patients are increased. Despite their increased incidence, these abnormalities can still be effectively managed without significant increase in morbidity and mortality. Management is made simpler if particular fluid-electrolyte disturbances can be anticipated.


Surgical Patient Hemorrhagic Shock Total Body Water Fluid Loss Respiratory Alkalosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman M, Suki WN: Preoperative fluid management of the surgical patient. In: MH Maxwell, CR Kleeman, RG Narins, eds, Clinical Disorders of Fluid and Electrolyte Metabolism. McGraw-Hill, New York, pp 897–916, 1987.Google Scholar
  2. 2.
    Pringle H, Maunsell CB, Pringle S: Clinical effects of ether anaesthesia on renal activity. Br Med J 11: 542–543, 1905.CrossRefGoogle Scholar
  3. 3.
    Hardy JD: Role of adrenal cortex in postoperative retention of salt and water. Ann Surg 132: 189–197, 1950.PubMedGoogle Scholar
  4. 4.
    Llaurado JG, Woodruff MF: Postoperative transient aldosteronism. Surgery 42: 313–322, 1957.PubMedGoogle Scholar
  5. 5.
    LeQuesne LP, Lewis AAG: Postoperative water and sodium retention. Lancet 1: 153–158, 1953.CrossRefGoogle Scholar
  6. 6.
    Dudley HF, Boling EA, LeQuesne LP, et al.: Studies on antidiuresis in surgery: effects of anesthesia, surgery and posterior pituitary antidiuretic hormone on water metabolism in man. Ann Surg 140: 354–365, 1954.PubMedCrossRefGoogle Scholar
  7. 7.
    Haas M, Glick SM: Radioimmunoassayable plasma v asopressin associated with surgery. Arch Surg 113: 579–600, 1978.CrossRefGoogle Scholar
  8. 8.
    Miyazaki M, Muranishi Y, Yokonos S: Anesthesia and renal function. Masui 26 (5): 497–504, 1977.PubMedGoogle Scholar
  9. 9.
    Deutsch S, Bastron RD, Peirce EG, et al.: The effects of anesthesia with thiopentone, nitrous oxide, narcotics and neuromuscular blocking drugs on renal function in normal man. Br J Anaesth 41:807–815, 1969.Google Scholar
  10. 10.
    Gorman HM, Graythorne MWB: The effects of a new neuroleptic-analgesic agent (Innovar) on renal function in normal man. Acta Anaesth Scand 24 (Suppl): 111–118, 1966.CrossRefGoogle Scholar
  11. 11.
    Arendhorst WJ, Navar LG: Renal circulation and glomerular hemodynamics. In: RW Schrier, CW Gottschalk, eds, Diseases of the Kidney. Little, Brown, Boston, pp 65–117, 1988.Google Scholar
  12. 12.
    Anderson RJ, Schrier RW: Renal sodium excretion, edematous disorders, and diuretic use. In: RW Schrier, ed, Renal and Electrolyte Disorders. Little, Brown, Boston, pp 79–95, 1986.Google Scholar
  13. 13.
    Habif DV, Papper EM, Fitzpatrick HF, et al.: The renal and hepatic blood flow, glomerular filtration rate and urinary output of electrolytes during cyclopropane, ether, and thiopental anesthesia, operation and the immediate postoperative period. Surgery 30: 241–255, 1951.PubMedGoogle Scholar
  14. 14.
    Ariel IM, Miller F: The effects of abdominal surgery upon renal clearance. Surgery 28: 716–728, 1950.PubMedGoogle Scholar
  15. 15.
    Johnson HT, Conn JW, lob V, et al.: Postoperative salt retention and its relation to increased adrenal cortical function. Ann Surg 132: 374–385, 1950.PubMedCrossRefGoogle Scholar
  16. 16.
    Moore FD, Ball MR: Facts and corollaries. In: FD Moore, MR Ball, eds, The Metabolic Response to Surgery. Charles C. Thomas, Springfield, MA, pp 126–137, 1952.Google Scholar
  17. 17.
    Cochrane JPS: The aldosterone response to surgery and the relationship of this response to postoperative sodium retention. Br J Surg 65: 744–747, 1978.PubMedCrossRefGoogle Scholar
  18. 18.
    Barta E, Kuzela L, Tordova E, et al.: The blood volume and the renin-angiotensin-aldosterone system following open-heart surgery. Resuscitation 8: 137–146, 1980.PubMedCrossRefGoogle Scholar
  19. 19.
    Hume DM, Bell CC, Barterr F: Direct measurement of adrenal secretion during operative trauma and convalescence. Surgery 52: 174–187, 1962.PubMedGoogle Scholar
  20. 20.
    LeQuesne LP, Cochrane JPS, Fieldman WR: Fluid and electrolyte disturbances after trauma: the role of adrenocortical and pituitary hormones. Br Med Bull 41: 212–217, 1985.Google Scholar
  21. 21.
    Forrest APM, Brown DAP, Morris SA, et al.: Metabolic response to surgery in totally adrenalectomized women. J R Coll Surg Edinb 3: 33–35, 1957.PubMedGoogle Scholar
  22. 22.
    Cline TN, Cole JW, Holden WD: Demonstration of an antidiuretic substance in the urine of post-operative patients. Surg Gynecol Obstet 96: 674–676, 1953.PubMedGoogle Scholar
  23. 23.
    Eisen VD, Lewis AAG: Antidiuretic activity of human urine after surgical operation. Lancet 2: 361–364, 1954.CrossRefGoogle Scholar
  24. 24.
    Moran WH, Miltenberger FW, Shuayb WA, et al.: The relationship of antidiuretic hormone secretion to surgical stress. Surgery 56: 99–107, 1964.Google Scholar
  25. 25.
    Deutsch S, Goldberg M, Dripps RD: Post-operative hyponatremia with the inappropriate release of antidiuretic hormone. Anesthesiology 27: 250–256, 1966.PubMedGoogle Scholar
  26. 26.
    Schrier R, Berl T: Nonosmolar factors affecting the release and action of vasopressin. N Engl J Med 292:81–88, 141–143, 1975.Google Scholar
  27. 27.
    Moran WH, Zimmerman B: Mechanisms of antidiuretic hormone (ADH) control of importance to the surgical patient. Surgery 62: 639–644, 1967.PubMedGoogle Scholar
  28. 28.
    Strauss MB: Body Water in Man. The Acquisition and Maintenance of the Body Fluids. Little, Brown, Boston, 1975.Google Scholar
  29. 29.
    Fieldman NR, Forsling ML, LeQuesne LP: The effect of vasopressin on solute and water excretion during and after surgical operations. Ann Surg 201: 383–390, 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    Ishihara H, Ishida T, Oyama T, et al.: Effects of general anesthesia and surgery on renal function and plasma ADH levels. Can Anaesth Soc J 25: 312–318, 1978.PubMedCrossRefGoogle Scholar
  31. 31.
    Gullick HD, Raisz LG: Changes in renal concentrating ability associated with major surgical procedures. N Engl J Med 262: 1309–1314, 1960.PubMedCrossRefGoogle Scholar
  32. 32.
    Stillstrom A, Person E, Vinnars E: Postoperative water and electrolyte changes in skeletal muscle: a clinical study with three different intravenous infusions. Acta Anesth Scand 31: 284–288, 1987.CrossRefGoogle Scholar
  33. 33.
    Kragelund E: Loss of fluid and blood to the peritoneal cavity during abdominal surgery. Surgery 69: 284–287, 1971.PubMedGoogle Scholar
  34. 34.
    Jarnum S: Plasma protein exudation in the peritoneal cavity during laparotomy. A comparative study in partial gastrectomy and protein-losing enteropathy. Gastroenterology 41: 107–118, 1961.PubMedGoogle Scholar
  35. 35.
    Shires GT, Williams J, Brown F: Acute change in extracellular fluids associated with major surgical procedures. Ann Surg 154: 803–810, 1961.PubMedCrossRefGoogle Scholar
  36. 36.
    Mattox KL, Bickell WH, et al.: Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating wound. N Engl J Med 331: 1105–1110, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Narins RG, Jones ER, Stom MC, et al.: Diagnostic strategies in disorders of fluid, electrolyte, and acid—base homeostasis. Am J Med 72: 496–520, 1982.PubMedCrossRefGoogle Scholar
  38. 38.
    Thoren L, Wiklund L: Intraoperative fluid therapy. World J Surg 7: 581–589, 1983.PubMedCrossRefGoogle Scholar
  39. 39.
    Baumber CD, Clark RG: Insensible water loss in surgical patients. Br J Surg 61: 53–56, 1974.PubMedCrossRefGoogle Scholar
  40. 40.
    Virtue RW, LeVine DS, Aikawa JK: Fluid shifts during the surgical period. RISA and S35 determinations following glucose, saline or lactate infusion. Ann Surg 163: 523–528, 1966.PubMedCrossRefGoogle Scholar
  41. 41.
    Coller FA, Maddock WG: Dehydration attendant on surgical operations. JAMA 99: 875–880, 1932.CrossRefGoogle Scholar
  42. 42.
    Lamke LO, Nilsson GE: Water loss by evaporation from abdominal cavity during surgery. Acta Chir Scand 143: 279284, 1977.Google Scholar
  43. 43.
    Wranne B: Cardiovascular function after pulmonary surgery. Anesthesia in thoracic surgery. Int Anaesthesiol Clin 10: 2739, 1932.Google Scholar
  44. 44.
    Shires GT: Principle and management of hemorrhagic shock. In: GT Shires, ed, Care of the Trauma Patient. McGraw-Hill, New York, pp 3–51, 1979.Google Scholar
  45. 45.
    Michelsen CB, Askanazi J, Gump FE, et al.: Changes in metabolism and muscle composition associated with total hip replacement. J Trauma 19: 29–32, 1979.PubMedCrossRefGoogle Scholar
  46. 46.
    Elwyn DH, Bryan-Brown CW, Shoemaker DC: Nutritional aspects of body water dislocation in postoperative and depleted patients. Ann Surg 182 (1): 76–85, 1975.PubMedCrossRefGoogle Scholar
  47. 47.
    Stjernstrom H, Jorfeldt L, Wiklund L: Influence of abdominal surgical trauma upon some energy metabolites in the quadriceps muscle in man. Clin Physiol 1: 305–311, 1981.PubMedCrossRefGoogle Scholar
  48. 48.
    Smith PC, Frank HA, Skillman JJ: Albumin deposition in human lung, skin and skeletal muscle during surgery. Surg Forum 26: 91–93, 1975.PubMedGoogle Scholar
  49. 49.
    Shires GT: Alterations in cellular membrane function during hemorrhagic shock in primates. Ann Surg 176: 288295, 1972.Google Scholar
  50. 50.
    Xiaoru S, Ires M, Weissman C: Physiologic variables and fluid resuscitation in the post-operative intensive care unit patients. Crit Care Med 21: 55–561, 1993.CrossRefGoogle Scholar
  51. 51.
    Hogman CF, Andreen M, Rosen I, et al.: Buffy coat poor red cells for improved haemotherapy. Experience with a new storage medium. Lancet 1 (8319): 269–271, 1983.PubMedCrossRefGoogle Scholar
  52. 52.
    Kindmark CO: Sequential changes in plasma proteins in various acute diseases. In: R Bianchi, G Mariana, AS McFarlane, eds, Plasma Protein Turnover. Macmillan Press, London, 1976.Google Scholar
  53. 53.
    Lundsgaard-Hansen P: Component therapy of surgical hemorrhage: red cell concentrates, colloids and crystalloids. Bibl Haematol 46: 147–169, 1980.PubMedGoogle Scholar
  54. 54.
    Wiederhielm CA: Dynamics of transcapillary fluid exchanges. J Gen Physiol 52(1) (Suppl 63s ): 29, 1968.Google Scholar
  55. 55.
    Wojtysiak SL, Brown RO, Robertson D, et al.: Effect of hypoalbuminemia and parenteral nutrition on free water excretion and electrolyte-free water resorption. Crit Care Med 20 (2): 164–169, 1992.PubMedCrossRefGoogle Scholar
  56. 56.
    Shackford SR, Fortlage DA, Peters RM, et al.: Serum osmolar and electrolyte changes associated with large infusions of hypertonic sodium lactate for intravascular volume expansion of patients undergoing aortic reconstruction. Surg Gynecol Obstet 164: 127–136, 1987.PubMedGoogle Scholar
  57. 57.
    Nerlich M, Gunther R, Demling RH: Resuscitation from a hemorrhagic shock with hypertonic saline or lactated Ringer’s effect on the pulmonary and systemic microcirculation. Circ Shock 10: 179–188, 1983.PubMedGoogle Scholar
  58. 58.
    Nakayama S, Sibley L, Gunther RA, et al.: Small-volume resuscitation with hypertonic saline (12,400mOsm/liter) during hemorrhagic shock. Circ Shock 13: 149–159, 1984.PubMedGoogle Scholar
  59. 59.
    Gazitua S, Scott JB, Chou CC, et al.: Effect of osmolarity on canine vascular resistance. Am J Physiol 217: 1216–1223, 1969.PubMedGoogle Scholar
  60. 60.
    Velasco IT, Pontieri V, Silva RE, et al.: Hyperosmotic NaC1 and severe hemorrhagic shock. Am J Physiol 239: 664–674, 1980.Google Scholar
  61. 61.
    Brooks DK, William WG, Manley RW, et al.: Osmolar and electrolyte changes in hemorrhagic shock. Lancet 1: 521–527, 1963.PubMedCrossRefGoogle Scholar
  62. 62.
    Monafo WM, Blanhe T, Dietz F: Effectiveness of hypertonic saline solutions in the treatment of murine hemorrhagic shock. Surg Forum 20: 21–23, 1969.Google Scholar
  63. 63.
    Weissman C: Insuring perioperative fluid hemostasis in critically ill patients. J Crit Illness 9: 1077–1094, 1994.Google Scholar
  64. 64.
    Fiorca JV, Robert WS, Hoffman MS, et al.: Concentrated albumin infusion as an aid to postoperative recovery after pelvic exentration. Gynecol Oncol 43: 265–269, 1991.CrossRefGoogle Scholar
  65. 65.
    Robertson GL, Berl T: Water metabolism. In: BM Brenner, FC Rector, eds, The Kidney. WB Saunders, Philadelphia, pp 408–418, 1986.Google Scholar
  66. 66.
    Stoops CG: Fluid and electrolyte disturbances in the perioperative period. Indiana Med 80: 13–19, 1987.PubMedGoogle Scholar
  67. 67.
    Dunn FL, Brenna TJ, Nelson AE, Robertson GL: The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 52: 3212–3219, 1973.PubMedCrossRefGoogle Scholar
  68. 68.
    Suki WN, Rector FC, Seldin DW: The site of action of furosemide and other sulfonamide diuretics in the dog. J Clin Invest 44: 1458–1469, 1965.PubMedCrossRefGoogle Scholar
  69. 69.
    Bert T: Water metabolism in potassium depletion. Miner Electrolyte Metab 4: 209–215, 1980.Google Scholar
  70. 70.
    Ayus JC, Olivero JJ, Frommer JP: Rapid correction of severe hyponatremia with intravenous hypertonic saline solution. Am J Med 72: 43–48, 1982.PubMedCrossRefGoogle Scholar
  71. 71.
    Sterns RH: Severe symptomatic hyponatremia: Treatment and outcome. A study of 64 patients. Ann Intern Med 107: 656–664, 1987.PubMedCrossRefGoogle Scholar
  72. 72.
    Humes DH: Disorders of water metabolism. In: JP Kokko, RL Tannen, eds, Fluids and Electrolytes. WB Saunders, Philadelphia, pp 118–149, 1986.Google Scholar
  73. 73.
    Sterns RH, Cox M, Peter UF: Internal potassium balance and control of the plasma potassium concentration. Medicine 60: 339–354, 1981.PubMedCrossRefGoogle Scholar
  74. 74.
    Bia MJ, DeFronzo RA: Extrarenal potassium homeostasis. Am J Physiol 240 (4): F257–F268, 1981.PubMedGoogle Scholar
  75. 75.
    Zieler KL: Effect of insulin on potassium efflux from rat muscle in the presence and absence of glucose. Am J Physiol 198: 1066–1071, 1960.Google Scholar
  76. 76.
    Vick RL, Todd EP, Leudke DW: Epinephrine induced hypokalemia—relation to liver and skeletal muscle. J Pharmacol Exp Ther 181 (1): 139–146, 1972.PubMedGoogle Scholar
  77. 77.
    Lawson DH, Murray RM, Parker JLW: Early mortality in the megaloblastic anemia. Q J Med XLI (New Series): 1–14, 1972.Google Scholar
  78. 78.
    Diengott D, Roza O, Levy N, Muammar S: Hypokalemia in barium posioning. Lancet 1: 343–345, 1964.CrossRefGoogle Scholar
  79. 79.
    Rose RD: Potassium homeostasis. In: JE Jeffers, M La Barbera, HC DeLeo, eds, Clinical Physiology of Acid–Base and Electrolyte Disorders. McGraw-Hill, New York, pp 211224, 1977.Google Scholar
  80. 80.
    Knochel JP: Etiologies and management of potassium deficiency. Hosp Pract 22: 153–162, 1987.Google Scholar
  81. 81.
    Vitez TS, Soper LE, Wong KC, et al.: Chronic hypokalemia and intraoperative dysrhythmias. Anesthesiology 63: 130–133, 1985.PubMedCrossRefGoogle Scholar
  82. 82.
    Batlle DC, Arruda JL, Kurtzman NA: Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med 304: 373–380, 1981.PubMedCrossRefGoogle Scholar
  83. 83.
    Tannen RL: Potassium Disorders. In: JP Kokko, RL Tannen, eds, Differential Diagnosis and Management of Fluid and Electrolyte, and Acid–Base Disorders. WB Saunders, Philadelphia, pp 197–198, 1986.Google Scholar
  84. 84.
    Hughes MR, Suki WN: Hypocalcemia and hypercalcemia. In: WN Suki, SG Massry, eds, Therapy of Renal Diseases and Related Disorders. Martinus Nijhoff, Boston, pp 83–99, 1984.CrossRefGoogle Scholar
  85. 85.
    Tohme JF, Bilezikian JP: Hypocalcemic emergencies. Endocrinol Metab Clin North Am 22: 363–375, 1993.PubMedGoogle Scholar
  86. 86.
    Jaun D: Hypokalemia: Differential diagnosis and mechanisms. Arch Intern Med 139: 1166–1171, 1979.CrossRefGoogle Scholar
  87. 87.
    Zalog GP: Hypocalcemic crisis. Crit Care Clin 7 (1): 191–199, 1991.Google Scholar
  88. 88.
    Davis, KD, Attie MF: Management of severe hypercalcemia. Crit Care Clin 7 (1): 175–190, 1991.PubMedGoogle Scholar
  89. 89.
    Suki WN, Yium JJ, Von Minden C, et al.: Acute treatment of hypercalcemia with furosemide. N Engl J Med 283(16):836840, 1970.Google Scholar
  90. 90.
    Strauch BS, Ball MF: Hemodialysis in the treatment of severe hypercalcemia. JAMA 235: 1347–1348, 1976.PubMedCrossRefGoogle Scholar
  91. 91.
    Rude RK: Magnesium metabolism and deficiency. Endocrinol Metab Clin North Am 22: 337–395, 1993.Google Scholar
  92. 92.
    Massry SG: Hypomagnesemia and hypermagnesemia. In: SG Massry, ed, Textbook of Nephrology. Williams and Wilkins, Baltimore, pp 382–385, 1983.Google Scholar
  93. 93.
    Gums JG: Clinical significance of magnesium: a review. Drug Intell Clin Pharm 21: 240–246, 1987.PubMedGoogle Scholar
  94. 94.
    Sutton RL, Dirk JH: Calcium and magnesium: renal handling and disorders of metabolism. In: BM Brenner, FC Rector, eds, The Kidney. WB Saunders, Philadelphia, pp 593–598, 1986.Google Scholar
  95. 95.
    Wong E, Rude R, et al.: A high prevalence of hypomagnesemia and hypermagnesemia in hospitalized patients. Am J Clin Pathol 79 (3): 348–352, 1983.PubMedGoogle Scholar
  96. 96.
    Ryzem E, Wagers P, Singer FR, et al.: Magnesium deficiency in medical ICU population. Crit Care Med 13: 19–21, 1985.CrossRefGoogle Scholar
  97. 97.
    Smith G, Tompkin R: Biliary magnesium loss in postoperative patient. Arch Surg 109: 77–79, 1974.PubMedCrossRefGoogle Scholar
  98. 98.
    Turlapaty P, Altura B: Magnesium deficiency produces spasm of coronary arteries. Science 208: 198–200, 1980.PubMedCrossRefGoogle Scholar
  99. 99.
    Hook JW: Hypermagnesemia. Crit Care Clin 7: 215–222, 1991.PubMedGoogle Scholar
  100. 100.
    Ferdinandus J, Pederson JA, Whang R: Hypermagnesemia as a cause of refractory hypotension, respiratory depression and coma. Arch Intern Med 141: 669–670, 1981.PubMedCrossRefGoogle Scholar
  101. 101.
    Knochel JP, Jacobson HR: Renal handling of phosphorus, clinical hypophosphatemia and phosphorus deficiency. In: BM Brenner, FC Rector, eds, The Kidney. WB Saunders, Philadelphia, pp 638–653, 1986.Google Scholar
  102. 102.
    Halevy J, Bulvik S: Severe hypophosphatemia in hospitalized patients. Arch Intern Med 148: 153–155, 1988.PubMedCrossRefGoogle Scholar
  103. 103.
    Riedler GF, Scheitlin WA: Hypophosphatemia in septicemia. Higher incidence in gram-negative than in gram-positive infection. Br Med J 1: 753–756, 1962.CrossRefGoogle Scholar
  104. 104.
    Schoenfeld Y, Hager S, Berliner S, et al.: Hypophosphatemia as a diagnostic aid in sepsis. NY State J Med 82: 163–165, 1982.Google Scholar
  105. 105.
    O’Connor LR, Wheeler WS, Bethune JE: Effect of hypophosphatemia on myocardial performance in man. N Engl J Med 297: 901–903, 1977.PubMedCrossRefGoogle Scholar
  106. 106.
    Newman JH, Neff TA, Ziporin P: Acute respiratory failure associated with hypophosphatemia on myocardial performance in man. N Engl J Med 296: 1101–1103, 1977.PubMedCrossRefGoogle Scholar
  107. 107.
    Aubier M, Murciano D, Lecocevic Y, et al.: Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med 313: 420–424, 1985.PubMedCrossRefGoogle Scholar
  108. 108.
    Knochel JP: The pathophysiology and clinical characteristics of severe hypophosphatemia. Arch Intern Med 137: 203–220, 1977.PubMedCrossRefGoogle Scholar
  109. 109.
    Klock JC, Williams HE, Mentzer WC: Hemolytic anemia and somatic cell dysfunction in severe hypophosphatemia. Arch Intern Med 134: 360–364, 1974.PubMedCrossRefGoogle Scholar
  110. 110.
    Lau K: Phosphate disorders. In: JP Kokko, RL Tannen, eds, Fluids and Electrolytes. WB Saunders, Philadelphia, pp 398458, 1986.Google Scholar
  111. 111.
    Craddock PR, Yanata Y, Van Santen L, et al.: Acquired phagocyte dysfunction: a complication of the hypophosphatemia of parenteral alimentation. N Engl J Med 290: 1403 1407, 1974.Google Scholar
  112. 112.
    Yamata Y, Hebbel RP, Silvis S, et al.: Blood cell abnormalities complicating the hypophosphatemia of hyper-alimentation: Erythrocyte and platelets ATP deficiency associated with hemolytic anemia and bleeding in hyperalimented dogs. J Lab Clin Med 84 (5): 643–653, 1974.Google Scholar
  113. 113.
    Rosen R, Leach W, Arieff A: Central nervous system dysfunction and hypophosphatemia (abstract). Kidney Int 12: 460, 1977.Google Scholar
  114. 114.
    Sternbach GL, Varon J: Severe hyperphosphatemia associated with hemorrhagic shock. Am J Emerg Med 10: 331–332, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Khalil U. Rahman
    • 1
  • Wadi N. Suki
    • 2
  1. 1.USA
  2. 2.Department of Medicine, Renal SectionBaylor College of MedicineHoustonUSA

Personalised recommendations