Respiratory Acid-Base Disorders

  • Horacio J. Adrogué
  • Nicolaos E. Madias


The level of carbon dioxide in body fluids is ultimately the result of the relationship between CO2 production by cellular metabolism and CO2 excretion by the lungs (1). The large increase in CO2 production that accompanies maximal exercise is attended by a prompt and effective enhancement in its excretion due to pulmonary hyperventilation, such that a substantial increase in CO2 tension in body fluids is prevented. On the other hand, primary changes in CO2 production that are not associated with parallel alterations in CO2 excretion will result in abnormal levels of CO2 tension. Similarly, primary alterations in CO2 excretion that are not accompanied by parallel changes in CO2 production will lead to deviations in the steady-state levels of carbon dioxide. This chapter evaluates the respiratory acid-base disorders, i.e., abnormalities in acid-base equilibrium initiated by a change in carbon dioxide tension of body fluids.


Metabolic Alkalosis Respiratory Acidosis Central Sleep Apnea Alveolar Ventilation Respiratory Alkalosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fishman AP: Alveolar ventilation and its disorders. In: AP Fishman, ed. Pulmonary Diseases and Disorders. McGraw- Hill, New York, p 299, 1988.Google Scholar
  2. 2.
    Madias NE, Adrogue HJ, Horowitz GL, Cohen JJ, Schwartz WB: A redefinition of normal acid-base equilibrium in man: CO, tension as a key determinant of normal plasma bicarbonate concentration. Kidney Int 16: 612, 1979.PubMedCrossRefGoogle Scholar
  3. 3.
    Gennari FJ, Kassirer JP: Respiratory alkalosis. In: JJ Cohen, JP Kassirer, eds, Acid/Base. Little, Brown, Boston, p 349. 1982.Google Scholar
  4. 4.
    Madias NE, Cohen JJ: Respiratory acidosis. In: JJ Cohen, JP Kassirer, eds, Acid/Base. Little, Brown, Boston, p. 307, 1982.Google Scholar
  5. 5.
    Madias NE, Cohen JJ: Adaptation to respiratory acidosis and alkalosis. In: AP Fishman, ed, Pulmonary Diseases and Disorders. McGraw-Hill. New York, p. 289, 1988.Google Scholar
  6. 6.
    Piiper J: Pulmonary and circulatory carbon dioxide transport and acid-base homeostasis. In: D Haussinger, ed, pH Homeostasis, Mechanisms and Control. Academic Press, London, p 181, 1988.Google Scholar
  7. 7.
    Adrogue HJ, Rashad MN, Gorin AB, Yacoub Y, Madias NE: Assessing acid-base status in circulatory failure: differences between arterial and central venous blood. N Engl J Med 320: 1312, 1989.PubMedCrossRefGoogle Scholar
  8. 8.
    Adrogue HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE: Arteriovenous acid-base disparity in circulatory failure: studies on mechanism. Am J Physiol 257: F1087, 1989.PubMedGoogle Scholar
  9. 9.
    Elliott CG, Morris AH: Clinical syndromes of respiratory acidosis and alkalosis. In: DW Seidin, G Giebisch, eds, The Regulation of Acid-Base Balance. Raven Press, New York, p 483, 1989.Google Scholar
  10. 10.
    Covelli HD, Black JW. Olsen MS, Beekman JF: Respiratory failure precipitated by high carbohydrate loads. Ann Intern Med 95: 579, 1981.PubMedCrossRefGoogle Scholar
  11. 11.
    Hamm LL, Lawrence G. DuBose TD Jr: Sorbent regenerative hemodialysis as a potential cause of acute hypercapnia. Kidney Im 21: 416, 1982.CrossRefGoogle Scholar
  12. 12.
    Hudson LD: Acute respiratory failure. In: AP Fishman, ed. Pulmonary Diseases and Disorders. McGraw-Hill, New York, p 2189, 1988.Google Scholar
  13. 13.
    Adrogue HJ, Madias NE: Influence of chronic respiratory acid-base disorders on acute CO, titration curve. J Appl Physiol 58: 1231, 1985.PubMedGoogle Scholar
  14. 14.
    Brackett NC Jr, Cohen JJ, Schwartz WB; Carbon dioxide titration curve of normal man. Effect of increasing degrees of acute hypercapnia on acid-base equilibrium. N Engl J Med 272: 6, 1965.PubMedCrossRefGoogle Scholar
  15. 15.
    Madias NE, Adrogue HJ: Influence of chronic metabolic acid-base disorders on the acute C02 titration curve. J Appl Physiol 55: 1187, 1983.PubMedGoogle Scholar
  16. 16.
    Brackett NC Jr, Wingo CF, Muren O, Solano JT: Acid-base response to chronic hypercapnia in man. N Engl J Med 280: 124, 1969.PubMedCrossRefGoogle Scholar
  17. 17.
    Cogan MG: Chronic hypercapnia stimulates proximal bicarbonate reabsorption in the rat. J Clin Invest 74: 1942, 1984.PubMedCrossRefGoogle Scholar
  18. 18.
    Laski ME, Kurtzman NA: Collecting tubule adaptation to respiratory acidosis induced in vivo. Am J Physiol 258: F15, 1990.PubMedGoogle Scholar
  19. 19.
    Bastani B, Gluck S, Hilden S, Johns C, Yang L, Madias N: Adaptation of renal vacuolar H-ATPase to acute or chronic respiratory acidosis in the rat (abstract). J Am Soc Nephrol 4: 831, 1993.Google Scholar
  20. 20.
    Madias NE, Wolf CJ, Cohen JJ: Regulation of acid-base equilibrium in chronic hypercapnia. Kidney Int 27: 538, 1985.PubMedCrossRefGoogle Scholar
  21. 21.
    Adrogue HJ, Madias NE: Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 71: 456, 1981.PubMedCrossRefGoogle Scholar
  22. 22.
    Dulfano MJ, Ishikawa S: Hypercapnia: Mental changes and extrapulmonary complications. An expanded concept of the “C02 intoxication” syndrome. Ann Intern Med 63: 829, 1965.PubMedCrossRefGoogle Scholar
  23. 23.
    Hudson LD, Kurt TL, Petty TL, Genton E: Arrhythmias associated with acute respiratory failure in patients with chronic airway obstruction. Chest 63: 661, 1973.PubMedCrossRefGoogle Scholar
  24. 24.
    Geer RT: Intubation and management of the airways. In: AP Fishman, ed, Pulmonary Diseases and Disorders. McGraw- Hill, New York, p 239, 1988.Google Scholar
  25. 25.
    Hall JB, Wood LDH: Management of the critically ill asthmatic patient. Med Clin North Am 74: 779, 1990.PubMedGoogle Scholar
  26. 26.
    McFadden ER Jr, Gilbert IA: Asthma. N Engl J Med 327: 1928, 1992.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosen RL, Bone RC: Treatment of acute exacerbations in chronic obstructive pulmonary disease. Med Clin North Am 74: 691, 1990.PubMedGoogle Scholar
  28. 28.
    Ferguson GT, Cherniak RM: Management of chronic obstructive pulmonary disease. N Engl J Med 328: 1017, 1993.PubMedCrossRefGoogle Scholar
  29. 29.
    Gennari FJ, Goldstein MB, Schwartz WB: The nature of the renal adaptation to chronic hypocapnia. J Clin Invest 51: 1722, 1972.PubMedCrossRefGoogle Scholar
  30. 30.
    Arbus GS, Hebert LA, Levesque PR, Etsten BE, Schwartz WB: Characterization and clinical application of the “significance band” for acute respiratory alkalosis. N Engl J Med 280: 117, 1969.PubMedCrossRefGoogle Scholar
  31. 31.
    Krapf R, Beeler 1, Hertner D, Hulter HN: Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium. N Engl J Med 324: 1394, 1991.PubMedCrossRefGoogle Scholar
  32. 32.
    Mazzara IT, Ayers SM, Grace WJ: Extreme hypocapnia in the critically ill patient. Am J Med 56: 450, 1974.PubMedCrossRefGoogle Scholar
  33. 33.
    Mulhausen R, Eichenholz A, Blumentals A: Acid-base disturbances in patients with cirrhosis of the liver. Medicine 46: 185, 1967.PubMedCrossRefGoogle Scholar
  34. 34.
    Lenfant C, Sullivan K: Adaptation to high altitude. N Engl J Med 284: 1298, 1971.PubMedCrossRefGoogle Scholar
  35. 35.
    Tolchin N, Roberts IL, Havashi J, Lewis EJ: Metabolic consequences ofhigh mass-transfer hemodialysis. Kidney lnt 11: 366, 1977.CrossRefGoogle Scholar
  36. 36.
    Madias NE, Cohen JJ, Adrogue HJ: Influence of acute and chronic respiratory alkalosis on preexisting metabolic alkalosis. Am J Physiol 258: F479, 1990.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Horacio J. Adrogué
    • 1
  • Nicolaos E. Madias
    • 2
  1. 1.Renal Section Department of Veterans Affairs Medical CenterBaylor College of MedicineHoustonUSA
  2. 2.Division of Nephrology, New England Medical CenterTufts University School of MedicineBostonUSA

Personalised recommendations