Advertisement

Glucocorticoid Receptor Cleavage by Leupeptin-Sensitive Enzymes in Rat Kidney Cytosol

  • Merry R. Sherman
  • David Barzilai
  • Perla R. Pine
  • Fe B. Tuazon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 117)

Summary

The proteolytic origin of small fragments of both the glucocorticoid and mineralocorticoid receptors in rat kidney cytosol was inferred from the effects of leupeptin, a bacterial tripeptide that inhibits many proteases [Sherman, M.R. et al., (1978). Federation Proc. 37:167–173]. In the present study, the smallest fragment of the glucocorticoid receptor containing the steroid-binding site, the mero-receptor,was characterized with respect to the Stokes radius (RS=23±3 Å) and the isoelectric point (pI=5.9 at 4°). Chromatography of cytosol labeled with [3H]triamcinolone acetonide on Sephadex LH-20 (Pharmacia) in aqueous buffer resolved the steroid-receptor complex from the unmodified free steroid and from steroid metabolites and contaminants. This technique facilitated analyses of the leupeptin-stabilized receptor form by isoelectric focusing (pI=4.9 at 4°) and centrifugation in glycerol gradients (s20 ,w = 9–11 S in 50 mM KC1). When this large complex in fresh cytosol was analyzed on Agarose (Bio-Rad) at a high flow rate, it had RS≃60 Å in 50 mM KC1 and RS≃30 Å in 400 mM KC1. These analytical studies with leupeptin indicate the need for inexpensive, irreversible inhibitors of proteolytic enzymes for the purification of intact receptors, holo-receptors from kidney and other tissues. Specific proteases can then be applied to dissect the holo-receptor into the globular mero-receptor, proximal to the steroid-binding site, and the asymmetric region(s), distal segment(s) that may be involved in the nuclear interactions.

Keywords

Glucocorticoid Receptor Steroid Receptor Mineralocorticoid Receptor Triamcinolone Acetonide Free Steroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sherman, M.R., Pickering, L.A., Rollwagen, F.M. and Miller, L.K. (1978). Federation Proc. 37: 167–173.Google Scholar
  2. 2.
    Sherman, M.R., Tuazon, F.B., Diaz, S.C. and Miller, L.K. (1976). Biochemistry 15: 980–989.PubMedCrossRefGoogle Scholar
  3. 3.
    Szent-Gyorgyi, A.G. (1953). Arch. Biochem. Biophys. 42: 305–320.Google Scholar
  4. 4.
    Sherman, M.R., Atienza, S.B.P., Shansky, J.R. and Hoffman, L.M. (1974). J. Biol. Chem. 249: 5351–5363.Google Scholar
  5. 5.
    Sherman, M.R. and Diaz, S.C. (1977). Ann. N.Y. Acad. Sci. 286: 81–86.Google Scholar
  6. 6.
    Miller, L.K. and Sherman, M.R. (1977). Proc. Am. Assoc. Cancer Res. 18: 89.Google Scholar
  7. 7.
    Sherman, M.R., Sömjen, G.S. and Pickering, L.A. (1978). Endocrine Society 60th Annual Meeting, Miami, Florida, Abstract #115.Google Scholar
  8. 8.
    Umezawa, H. (1976). Methods Enzymol. 45: 678–695.PubMedCrossRefGoogle Scholar
  9. 9.
    Wrange, 0. and Gustafsson, J.-A. (1978). J. Biol. Chem. 253: 856–865.Google Scholar
  10. 10.
    Schrader, W.T., Heuer, S.S. and O’Malley, B.W. (1974). Biol. Reprod. 12: 134–142.CrossRefGoogle Scholar
  11. 11.
    Aoyagi, T., Takeuchi, T., Matsuzaki, A., Kawamura, K., Kondo, S.-I., Hamada, M., Maeda, K. and Umezawa, H. (1969). J. Antibiot. 22: 283–286.PubMedCrossRefGoogle Scholar
  12. 12.
    Kondo, S.-I., Kawamura, K., Iwanaga, J., Hamada, M., Aoyagi, T., Maeda, K., Takeuchi, T. and Umezawa, H. (1969). Chem. Pharm. Bull. 17: 1896–1901.Google Scholar
  13. 13.
    Kawamura, K., Kondo, S.-I., Maeda, K. and Umezawa, H. (1969). Chem. Pharm. Bull. 17: 1902–1909.Google Scholar
  14. 14.
    Funder, J.W., Feldman, D. and Edelman, I.S. (1973). Endocrinology 92: 1005–1013.PubMedCrossRefGoogle Scholar
  15. 15.
    Blanford, A.T. and Murphy, B.E.P. (1977). Am. J. Ob. Gyn. 127: 264–267.Google Scholar
  16. 16.
    deKloet, R.E., Wallach, G. and McEwen, B.S. (1975). Endocrinology 96: 598–609.CrossRefGoogle Scholar
  17. 17.
    Toft, D.O. and Sherman, M.R. (1975). Methods Enzymol. 36: 156–166.PubMedCrossRefGoogle Scholar
  18. 18.
    Sherman, M.R. (1975). Methods Enzymol. 36: 211–234.PubMedCrossRefGoogle Scholar
  19. 19.
    DeSombre, E.R., Puca, G.A. and Jensen, E.V. (1969). Proc. Nat. Acad. Sci. USA 64: 148–154.Google Scholar
  20. 20.
    Sherman, M.R., Corvol, P.L. and O’Malley, B.W. (1970). J. Biol. Chem. 245: 6085–6096.Google Scholar
  21. 21.
    Means,, G.E. and Feeney, R.E. (1968). Biochemistry 7: 2192–2201.CrossRefGoogle Scholar
  22. 22.
    Rice, R.H. and Means, G.E. (1971). J. Biol. Chem. 246: 831–832.Google Scholar
  23. 23.
    Kalimi, M., Colman, P. and Feigelson, P. (1975). J. Biol. Chem. 250: 1080–1086.Google Scholar
  24. 24.
    Dayton, W.R., Reville, W.J., Goll, D.E. and Stromer, M.H. (1976). Biochemistry 15: 2159–2167.PubMedCrossRefGoogle Scholar
  25. 25.
    Tanford, C. and Lovrien, R. (1962). J. Am. Chem. Soc. 84: 1892–1896.Google Scholar
  26. 26.
    Stellwagen, E. and Schachman, H.K. (1962). Biochemistry 1: 1056–1069.PubMedCrossRefGoogle Scholar
  27. 27.
    Schachman, H.K. (1959). Ultracentrifugation in Biochemistry, Academic Press, New York, p. 239.Google Scholar
  28. 28.
    King, R.J.B. and Mainwaring, W.I.P. (1974). Steroid-Cell Interactions, University Park Press, Baltimore.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Merry R. Sherman
    • 1
  • David Barzilai
    • 1
  • Perla R. Pine
    • 1
  • Fe B. Tuazon
    • 1
  1. 1.Memorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations