Advertisement

Generation and Detection of Subpoissonian Fields in Micromasers

  • P. Meystre
Part of the NATO ASI Series book series (NSSB, volume 190)

Abstract

Subpoissonian fields, and in particular number states of the electromagnetic field, exhibit intensity fluctuations below the classical limit. The last few years have witnessed considerable interest in the generation of such states. To our knowledge, the first observation of subpoissonian fields was performed by Short and Mandel1 in single-atom resonance fluorescence, following a prediction of Carmichael and Walls.2 More recently, Saleh and Teich3 and Walker and Jakeman4 have produced subpoissonian fields by using antibunched electron sources and detection-event-triggered deadtimes in light beams, respectively. An important technological breakthrough was achieved by Machida et al,5 who demonstrated subpoissonian (or intensity squeezed) fields in a pump-noisesuppressed semiconductor laser. This method is closely related to the generation of subpoissonian light in a micromaser6 as well as to the recent proposal of a squeezed-pump laser by Marte and Walls.7 High number states of the electromagnetic field were recently generated by Walther8 following a prediction by Filipowicz et al.9

Keywords

Number State Cavity Mode Photon Number Photon Statistic Pump Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    H. J. Carmichael and D. F. Walls, J. Phys. B9, L43 and 1199 (1976).Google Scholar
  3. 3.
    M. C. Teich and B. E. A. Saleh, J. Opt. Soc. Am. B2, 275 (1985).Google Scholar
  4. 4.
    J. G. Walker and E. Jakeman, Optica Acta 32. 1303 (1985)CrossRefGoogle Scholar
  5. 5.
    S. Machida, Y. Yamamoto and Y. Itaya, Phy. Rev. Lett. 58, 1000 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A34, 3077 (1986).Google Scholar
  7. 7.
    M. A. M. Marte and D. F. Walls, preprint (1987).Google Scholar
  8. 8.
    H. Walther, private communication (1987).Google Scholar
  9. 9.
    P. Filipowicz, J. Javanainen and P. Meystre, J. Opt. Soc. Am. B3, 906 (1986).Google Scholar
  10. 10.
    D. Meschede, H. Walther and G. Müller, Phys. Rev. Lett. 54, 551 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    J. Krause, M. O. Scully and H. Walther, Phys. Rev. A34, 2032 (1986).Google Scholar
  12. 12.
    M. Brune, J. M. Raimond and S. Haroche, Phys. Rev. A35, 154 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    L. Davidovich, J. M. Raimond, M. Brune and S. Haroche, Phys. Rev. A36, 3771 (1987).Google Scholar
  14. 14.
    M. Brune, J. M. Raimond, P. Goy, L. Davidovich and S. Haroche, Phys. Rev. Lett. 59, 1899 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    P. Meystre, Opt. Letters 12, 669 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    P. Meystre and E. M. Wright, Phys. Rev. A to be published.Google Scholar
  17. 17.
    W. E. Lamb, Jr., “Quantum Mechanical Amplifiers”,Vol. 2 of Lectures in Theoretical Physics,W. Brittin and D. W. Downs, eds. (Interscience, New York, 1%0).Google Scholar
  18. 18.
    M. Sargent III, M. O. Scully and W E Lamb, Jr, Laser Physics (Addison Wesley, Reading, Mass 1974), Chap. 17.Google Scholar
  19. 19.
    P. Filipowicz, J. Javanainen, and P. Meystre, “Why is laser light coherent ? Photon statistics in coherently driven oscillators” in Coherence, Cooperation and Fluctuations,F. Haake, L. M. Narducci, and D. F. Walls, eds. (Cambridge University Press, Cambridge 1986), p. 206.Google Scholar
  20. 20.
    E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).CrossRefGoogle Scholar
  21. 21.
    A. O. Caldeira and A. J. Leggett, Phys. Rev. A31, 1059 (1985)ADSCrossRefGoogle Scholar
  22. D. F. Walls and G. J. Milburn, Phys. Rev. A31, 2403 (1985)MathSciNetADSCrossRefGoogle Scholar
  23. C. M. Savage and D. F. Walls, Phys. Rev. A32, 2316 (1985)MathSciNetADSCrossRefGoogle Scholar
  24. 22.
    G. Milburn, “Quantum coherences in randomly kicked quantum systems”,submitted to Phys. Rev. A.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • P. Meystre
    • 1
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA

Personalised recommendations