Advertisement

Realization of Measurement and the Standard Quantum Limit

  • Masanao Ozawa
Part of the NATO ASI Series book series (NSSB, volume 190)

Abstract

What measurement is there? It is a difficult question but the importance of this question has increased much in connection with the effort to detect gravitational radiation. For monitoring the position of a free mass such as the gravitational-wave interferometer [1], it is usually supposed that the sensitivity is limited by the so called standard quantum limit (SQL) [2,3]. In the recent controversy [4]–[8], started with Yuen’s proposal [4] of a measurement which beats the SQL, the meaning of the SQL has been much clarified. In order to settle this controversy, rigorous treatment of the question on what measurement there is seems the key point.

Keywords

Measurement Probability Probe System Contractive State Density Operator Position Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Weiss, in Sources of Gravitational Radiation, edited by L. Smarr ( Cambridge, Univ. Press, Cambridge, 1979 ).Google Scholar
  2. [2]
    V. B. Braginsky and Yu. I. Vorontsov, Ups. Fiz. Nauk 114, 41 (1974)ADSCrossRefGoogle Scholar
  3. V. B. Braginsky and Yu. I. Vorontsov, Soy. Phys. Usp. 17, 644 (1975).ADSCrossRefGoogle Scholar
  4. [3]
    C. M. Caves, K. S. Throne, R. W. P. Dreyer, V. D. Sandberg, and M Zimmermann, Rev. Mod. Phys. 52, 341 (1980).ADSCrossRefGoogle Scholar
  5. [4]
    H. P. Yuen, Phys. Rev. Lett. 51, 719 (1983).ADSCrossRefGoogle Scholar
  6. [5]
    K. Wodkiewicz, Phys. Rev. Lett. 52, 787 (1984)MathSciNetADSCrossRefGoogle Scholar
  7. H.P. Yuen, ibid. 52, 788 (1984).Google Scholar
  8. [6]
    R. Lynch, Phys. Rev. Lett. 52, 1729 (1984)ADSCrossRefGoogle Scholar
  9. H.P. Yuen, ibid. 52, 1730 (1984).Google Scholar
  10. [7]
    R. Lynch, Phys. Rev. Lett. 54, 1599 (1985).ADSCrossRefGoogle Scholar
  11. [8]
    C. M. Caves, Phys. Rev. Lett. 54, 2465 (1985).MathSciNetADSCrossRefGoogle Scholar
  12. [9]
    E. B. Davies, Quantum Theory of Open Systems ( Academic, London, 1976 ).MATHGoogle Scholar
  13. [10]
    A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory ( North-Holland, Amsterdom, 1982 ).MATHGoogle Scholar
  14. [11]
    A. Barchielli, L. Lanz and G. M. Prosperi, Nuovo Cimento B 72, 79 (1982).MathSciNetADSCrossRefGoogle Scholar
  15. [12]
    A. Barchielli, L. Lanz and G. M. Prosperi, Found. Phys. 13, 779 (1983).MathSciNetADSCrossRefGoogle Scholar
  16. [13]
    G. Ludwig, Foundations of Quantum Mechanics I and II (Springer, Berlin, 1983 ).Google Scholar
  17. [14]
    K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory ( Springer, Berlin, 1983 ).MATHCrossRefGoogle Scholar
  18. [15]
    M. Ozawa, J. Math. Phys. 25, 79 (1984).MathSciNetADSCrossRefGoogle Scholar
  19. [16]
    M. Ozawa, Pub. R.I.M.S., Kyoto Univ. 21, 279 (1985).Google Scholar
  20. [17]
    M. Ozawa, J. Math. Phys. 26, 1948 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  21. [18]
    M. Ozawa, J. Math. Phys. 27, 759 (1986).MathSciNetADSCrossRefGoogle Scholar
  22. [19]
    M. Ozawa, Phys. Rev. Lett. 60, 385 (1988).ADSCrossRefGoogle Scholar
  23. [20]
    J. von Neumann, Mathematical Foundations of Quantum Mechanics, ( Princeton University Press, Princeton, N.J., 1955 ).MATHGoogle Scholar
  24. [21]
    W. -T. Ni, Phys. Rev. A 33, 2225 (1986).ADSCrossRefGoogle Scholar
  25. [22]
    E. Arthurs and J.L. Kelly, Jr, Bell Syst. Tech. J. 44 (4), 725 (1965).Google Scholar
  26. [23]
    H. P. Yuen, Northwestern University, Evanston, IL, (unpublished).Google Scholar
  27. [24]
    J. P. Gordon and W. H. Louisell in Physics of Quantum Electronics, edited by P. L. Kelly, B. Lax and P. E. Tannenwald ( McGraw-Hill, New York, 1966 ).Google Scholar
  28. [25]
    C. M. Caves, Phys. Rev. D 33 1643 (1986).MathSciNetADSCrossRefGoogle Scholar
  29. [26]
    B. L. Schumaker, Phys. Rep. 135, 317 (1986).MathSciNetADSCrossRefGoogle Scholar
  30. [27]
    R. S. Bondurant, Phys. Rev. A 34, 3927 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Masanao Ozawa
    • 1
  1. 1.Department of Mathematics College of General EducationNagoya UniversityNagoya 464Japan

Personalised recommendations