Advertisement

Squeezed-Light Generation in Optical Waveguides

  • Prem Kumar
Part of the NATO ASI Series book series (NSSB, volume 190)

Abstract

Within the past few years, squeezed states of light have been generated in a number of distinct physical systems [1]. All of them can be categorized into the following two groups: i) those exploiting the resonant nonlinear interaction of light with two-level atoms and ii) those involving the nonresonant nonlinearity of the interaction of high-intensity light with transparent media. The experiments in the first group have included intracavity four-wave mixing in an atomic beam [2], forward four-wave mixing in a Doppler-broadened gaseous medium [3], and the strong interaction of a small-volume high-finesse optical cavity with a beam of two-level atoms [4]. The experiments in the second group, namely forward four-wave mixing in a single-mode optical fiber [5] and intracavity parametric down-conversion in a nonlinear crystal [6], have been more interesting from an applications point of view and indeed the latter has emerged to be a prototypical system for the generation of squeezed light. Over 60% squeezing has been measured in light emitted by a cavity containing the MgO:LiNbO3 down-converter [6].

Keywords

Optical Waveguide Waveguide Mode Lower Order Mode Linear Loss Nonlinear Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Opt. Soc. Am. B 4, No. 10 (1987); special issue on squeezed states of light.Google Scholar
  2. 2.
    R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    M. W. Maeda, P. Kumar, and J. H. Shapiro, Opt. Lett. 12, 161 (1987); J. Opt. Soc. Am. B 4, 1501 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    M. G. Raizen, L. A. Orozco, M. Xiao, T. L. Boyd, and H. J. Kimble, Phys. Rev. Lett. 59, 198 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev. Lett. 57, 2520 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    M. Xiao, L.-A. Wu, and H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta, Phys. Rev. Lett. 59, 2153 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    G. I. Stegeman, C. T. Seaton, W. M. Hetherington III, A. D. Boardman, and P. Egan, in Nonlinear Optics: Materials and Devices, Flytzanis and Oudar, Eds. ( Springer, Berlin, heidelberg, New York, 1985 ) pp. 31–64.Google Scholar
  10. 10.
    H. Ito and H. Inaba, Opt. Lett. 2, 139 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, and M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    W. H. Louisell, Quantum Statistical Properties of Radiation ( Wiley, New York, 1973 ).Google Scholar
  13. 13.
    P. K. Tien, Appl. Opt. 10, 2395 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    H. P. Yuen, Opt. Lett. 12, 789 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    W. Sohler and H. Suche, Appl. Phys. Lett. 37, 255 (1980); Proc. SPIE 408, 163 (1983).Google Scholar
  16. 16.
    R. V. Schmidt and I. P. Kaminov, Appl. Phys. Lett. 25, 458 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    B. W. Wessels, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Prem Kumar
    • 1
  1. 1.Department of Electrical Engineering and Computer Science The Technological InstituteNorthwestern UniversityEvanstonUSA

Personalised recommendations