Phase Space, Correspondence Principle and Dynamical Phases: Photon Count Probabilities of Coherent and Squeezed States via Interfering Areas in Phase Space

  • Wolfgang P. Schleich
Part of the NATO ASI Series book series (NSSB, volume 190)


Motion of an electron around a nucleus or, in its most elementary version, vibratory motion of a harmonic oscillator viewed in Planck-Bohr-Sommerfeld quantized phase space;1–3 and matching the discrete, microscopic world with the continuous, macroscopic world via Bohr’s correspondence principle,4–5 these are the essential ingredients of “Atommechanik”.4 Combined with the concept of interference - expressed in the familiar double-slit experiment6 - these central ideas of early quantum mechanics provide in the present paper the most vivid sources of insight into the photon count probability, W m , of a coherent state7–9 shown in Fig. 1 and into the oscillatory10–15 photon statistics16 of a highly squeezed stat17 of a single mode of the electromagnetic field depicted in Fig. 2.


Phase Space Asymptotic Expansion Coherent State Wigner Function Photon Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Planck, “Vorlesungen fiber die Theorie der Wärmestrahlung”, J. A. Barth, Leipzig (1906), p. 154Google Scholar
  2. M. Planck, Die physikalische Struktur des Phasenraumes, Ann. Phys. (Leipzig) 50: 385 (1916).ADSGoogle Scholar
  3. 2.
    N. Bohr, “Collected Works,” L. Rosenfeld, ed., North-Holland, New York (1976), Vol. 3.Google Scholar
  4. 3.
    A. Sommerfeld, Zur Theorie der Balmerschen Serie, Sitzungsber. d. kgl. bayr. Akad. d. Wiss.: 425 (1915)Google Scholar
  5. Die Feinstruktur der Wasserstoff-und der Wasserstoff-ähnlichen Linien, ibid. 459 (1915)Google Scholar
  6. Zur Quantentheorie der Spektrallinien, Ann. Phys. (Leipzig) 51: 1 (1916).Google Scholar
  7. 4.
    M. Born, Vorlesungen fiber Atommechanik, in: “Struktur der Materie in Einzeldarstellungen,” M. Born and J. Franck, eds., Springer, Berlin (1925).Google Scholar
  8. 5.
    P. Debye, Wellenmechanik and Korrespondenzprinzip, Physik. Zeitschr. 28: 170 (1927)MATHGoogle Scholar
  9. H. A. Kramers, Quantentheorie des Elektrons und der Strahlung, Vol. 2 in: “Hand-und Jahrbuch der Chemischen Physik,” Eucken-Wolf, Leipzig, (1938).Google Scholar
  10. W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik, in: “Handbuch der Physik,” Vol. 24, H. Geiger and K. Scheel, eds., Springer, Berlin (1933)Google Scholar
  11. R. L. Liboff, The correspondence principle revisited, Physics Today 37 (2): 50 (1984).CrossRefGoogle Scholar
  12. 6.
    J. A. Wheeler and W. H. Zurek, “Quantum Theory and Measurement,” Princeton University Press, Princeton (1983)Google Scholar
  13. R. P. Feynman, R. B. Leighton and M. Sands, “The Feynman Lectures on Physics,” Addison-Wesley, Reading (1964), Vol. 3.Google Scholar
  14. 7.
    R. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131: 2766 (1963).MathSciNetCrossRefGoogle Scholar
  15. 8.
    M. Sargent, M. O. Scully, W. E. Lamb, “Laser Physics,” Addison-Wesley, Reading (1974), Appendix H.Google Scholar
  16. 9.
    W. H. Louisell, “Quantum Statistical Properties of Radiation,” Wiley, New York (1973).Google Scholar
  17. 10.
    R. S. Bondurant (B. S. thesis, MIT, unpublished).Google Scholar
  18. 11.
    J. A. Wheeler, Franck-Condon effect and squeezed state physics as double-source interference phenomena, Lett. Math. Phys. 10: 201 (1985).MathSciNetADSCrossRefGoogle Scholar
  19. 12.
    W. Schleich and J. A. Wheeler, Interference in phase space, in: “The Physics of Phase Space,” Y. S. Kim and W. W. Zachary, eds., Springer, New York (1987).Google Scholar
  20. 13.
    W. Schleich and J. A. Wheeler, Oscillations in photon distribution of squeezed states and interference in phase space, Nature 326: 574 (1987).ADSCrossRefGoogle Scholar
  21. 14.
    W. Schleich and J. A. Wheeler, Oscillations in photon distribution of squeezed states, JOSA B4: 1715 (1987).CrossRefGoogle Scholar
  22. 15.
    A. Vourdas and R. M. Weiner, Photon-counting distribution in squeezed states, Phys. Rev. A36: 5866 (1987).Google Scholar
  23. 16.
    H. P. Yuen, Two-photon coherent states of the radiation field, Phys. Rev. A13: 2226 (1976)Google Scholar
  24. G. J. Milburn and D. F. Walls, Squeezed states and intensity fluctuations in degenerate parametric oscillators, Phys. Rev. A27: 392 (1983).Google Scholar
  25. 17.
    D. F. Walls, Squeezed states of light, Nature 306:. 141 (1983)Google Scholar
  26. D. F. Walls, JOSA B4 (10): (1987)Google Scholar
  27. D. F. Walls, J. of Mod. Opt. 34 (6–7): (1987)Google Scholar
  28. G. Leuchs, Photon statistics, anti-bunching and squeezed states, in: “Frontiers of Nonequilibrium, Statistical Physics,” G. T. Moore and M. O. Scully, eds., Plenum, New York, (1986).Google Scholar
  29. 18.
    M. Hillery, R. F. O’Connell, M. O. Scully and E. P. Wigner, Distribution functions in physics: fundamentals, Phys. Rep. 106: 121 (1984)MathSciNetCrossRefGoogle Scholar
  30. V. I. Tatarskii, The Wigner representation of quantum mechanics, Usp. Fiz. Nauk. 139: 587 (1983)MathSciNetCrossRefGoogle Scholar
  31. L. Cohen, Positive and negative joint quantum distributions, in: “Frontiers of Nonequilibrium Statistical Physics,” G. T. Moore and M. O. Scully, eds., Plenum, New York (1986).Google Scholar
  32. 19.
    W. Schleich and J. A. Wheeler, Interference in phase space, Ann. Phys. (New York), to be publishedGoogle Scholar
  33. J. A. C. Gallas, W. Schleich and J. A. Wheeler, Beyond interference in phase space, Ann. Phys. (New York), to be published.Google Scholar
  34. 20.
    E. J. Heller, Phase space interpretation of semiclassical theory, J. Chem. Phys. 67: 3339 (1977).ADSCrossRefGoogle Scholar
  35. 21.
    W. Schleich, H. Walther and J. A. Wheeler, Area in phase space as determiner of transition probability: Bohr-Sommerfeld bands, Wigner ripples and Fresnel zones, Found. Phys. (to be published).Google Scholar
  36. 22.
    W. Schleich, D.’ F. Walls and J. A. Wheeler, Area of overlap and interference in phase space versus Wigner pseudo-probabilities, Phys. Rev. A (to be published).Google Scholar
  37. 23.
    G. J. Milburn and D. F. Walls, Effect of dissipation on interference in phase space, Phys. Rev. A (to be published), G. J. Milburn, this volume.Google Scholar
  38. 24.
    P. D. Drummond, Interference in squeezed field measurements using coherent phase integrals, Phys. Rev. A (to be published).Google Scholar
  39. 25.
    D. Bohm, “Quantum Theory,” Prentice Hall, Englewood Cliffs, 1951.Google Scholar
  40. 26.
    E. U. Condon, The Franck-Condon principle and related topics, Am. J. Phys. 15: 365 (1947).ADSCrossRefGoogle Scholar
  41. 27.
    J. Janszky and Y. Y. Yushin, Squeezing via frequency jump, Optics Comm. 59: 151 (1986)ADSCrossRefGoogle Scholar
  42. R. Graham, Squeezing and frequency changes in harmonic oscillations, J. Mod. Opt. 34: 873 (1987).ADSMATHCrossRefGoogle Scholar
  43. 28.
    L. Landau and R. Peierls, Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie, Z. Phys. 69: 56 (1931)CrossRefGoogle Scholar
  44. N. Bohr and L. Rosenfeld, Zur Frage der Messbarkeit der elektromagnetischen Feldgrössen, Mat: fys. Medd. Dan. Vid. Selsk. 12 (8): (1933)Google Scholar
  45. N. Bohr and L. Rosenfeld, Field and charge measurements in quantum electrodynamics, Phys. Rev. 78: 794 (1950)MATHCrossRefGoogle Scholar
  46. 29.
    G. Szegö, “Orthogonal polynomials,” American Mathematical Society, New York (1939).Google Scholar
  47. 30.
    D. Stoler, Equivalence classes of minimum-uncertainty packets, Phys. Rev. D 1: 3217 (1970)CrossRefGoogle Scholar
  48. D. Stoler, Equivalence classes of minimum-uncertainty packets, II, Phys. Rev. D 4: 1925 (1971)CrossRefGoogle Scholar
  49. M. Nieto, What are squeezed states really like?, in: “Frontiers in Nonequilibrium Statistical Physics,” G. T. Moore and M. O. Scully, eds., Plenum Press, New York (1986).Google Scholar
  50. 31.
    Oscillations in photon distributions of electromagnetic fields have also been found in the context of the Jaynes-Cummings model and the Rydberg maser, see for example P. Meystre, E. Geneux, A. Quattropani and A. Faist, Long time behavior of a two level atom in interaction with an electromagnetic field, Nuovo Cimento B25: 521 (1975)CrossRefGoogle Scholar
  51. P. Filipowicz, P. Meystre, G. Rempe and H. Walther, A testing ground for quantum electrodynamics, Opt. Act. 32: 1105 (1985) and also in various other nonlinear optical systems, see for example G. S. Agarwal and G. Adam, Photon number distributions for quantum fields generated in nonlinear optical processes, Phys. Rev. A (to be published).Google Scholar
  52. 32.
    B. Friedman, “Lectures On Application-Oriented Mathematics,” University of Chicago Press, Chicago (1957).Google Scholar
  53. 33.
    J. R. Klauder, The design of radar signals having both high range resolution and high velocity resolution, Bell Sys. Tech. 39: 809 (1960).Google Scholar
  54. 34.
    M. V. Berry, Semiclassical mechanics in phase space: A study of Wigner’s function, Phil. Trans. Roy. Soc. 287: 237 (1977).ADSMATHCrossRefGoogle Scholar
  55. 35.
    W. G. Brown, Intensitätsveränderungen in einigen Fluoreszenzserien von Natrium, Zs. f. Physik 82: 768 (1933)CrossRefGoogle Scholar
  56. W. Demtröder, “Laser Spectroscopy,” Springer, Berlin (1981) p. 418Google Scholar
  57. M. Trautmann, J. Wanner, S. K. Zhou and C. R. Vidal, Dynamics of selected róvibronic B 3740) states of IF: Variation of the electronic transition moment with internuclear distance, J. Chem. Phys. 82: 693 (1985).ADSCrossRefGoogle Scholar
  58. 36.
    M. Abramowitz and I. E. Stegun, “Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., (1964).MATHGoogle Scholar
  59. 37.
    C. Leubner, Uniform asymptotic expansion of a class of generalized Bessel functions occurring in the study of fundamental scattering processes in intense laser fields, Phys. Rev. A 23: 2877 (1981).CrossRefGoogle Scholar
  60. 38.
    C. Chester, B. Friedman and F. Ursell, An extension of the method of steepest descents, Proc. Camb. Phil. Soc. 53: 599 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  61. N. Bleistein and R. A. Handelsman, “Asymptotic Expansions of Integrals,” Holt, Rineheart and Winston, New York (1975).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Wolfgang P. Schleich
    • 1
    • 2
  1. 1.Max-Planck Institut für QuantenoptikGarching bei MünchenW. Germany
  2. 2.Center for Advanced Studies and Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations