Factors Affecting the Metabolism of Galactocerebroside and Glucocerebroside

  • Norman S. Radin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 19)


Our laboratory has been studying the factors which affect brain cerebroside metabolism through two major approaches: (1) the comparison of enzyme specific activities with various substrates, and (2) the susceptibility of the enzymes to interference by synthetic lipids, analogous in structure to the substrates. The problem is complicated by the existence of the 2-hydroxy group in some of the fatty acids, and the existence of the two clusters of fatty acid chain lengths, around 18 and around 24 carbon atoms.


Hydroxy Acid Fatty Acid Chain Length Neuronal Perikaryon Chain Base Branched Methyl Group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, R. C. and Radin, N. S. Synthetic amides resembling ceramide which inhibit cerebroside galactosidase. J. Lipid Res., in press.Google Scholar
  2. 2.
    Basu, S., Kaufman, B. and Roseman, S. Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chick brain. J. Biol. Chem. 243, 5802, 1968.PubMedGoogle Scholar
  3. 3.
    Brenkert, A. and Radin, N. S. Synthesis of galactosyl ceramide and glucosyl ceramide by rat brain: assay procedures and changes with age. Brain Res., in press.Google Scholar
  4. 4.
    Conchie, J. and Levvy, G. A. Inhibition of glycosidases by lactones. Biochem. J. 65, 389, 1957.Google Scholar
  5. 5.
    Derry, D. M. and Wolfe, L. S. Gangliosides in isolated neurons and glial cells. Science 158, 1450, 1967.PubMedCrossRefGoogle Scholar
  6. 6.
    DeVries, G. H. and Norton, W. T. Evidence for the absence of myelin and the presence of galactolipid in an axon-enriched fraction from bovine CNS. Federation Proc. 30, 1248 Abs, 1971.Google Scholar
  7. 7.
    Flangas, A. L. and Bowman, R. E. Neuronal perikarya of rat brain isolated by zonal centrifugation. Science 161, 1025, 1968.PubMedCrossRefGoogle Scholar
  8. 8.
    Hajra, A. K. and Radin, N. S. Isotopic studies of the biosynthesis of the cerebroside fatty acids in rats. J. Lipid Res. 4, 270, 1963.Google Scholar
  9. 8a.
    Hammarstrm, S. Eur. J. Biochem. 21, 388, 1971.Google Scholar
  10. 9.
    Kishimoto, Y., Agranoff, B. W., Radin, N. S. and Burton, R. M. Comparison of the fatty acids of lipids of subcellular brain function. J. Neurochem. 16 397, 1969.PubMedCrossRefGoogle Scholar
  11. 10.
    Kishimoto, Y. and Radin, N. S. Occurrence of 2-hydroxy fatty acids in animal tissues. J. Lipid Res. 4, 139, 1963.PubMedGoogle Scholar
  12. 11.
    Klenk, E. and Huang, R. T. C. Zur Kenntnis der Gehirnceramide und der darin vorkommenden Sphingosinbasen. Z. physiol. Chem. 349, 451, 1968.CrossRefGoogle Scholar
  13. 12.
    Lewin, E. and Hess, H. H. Intralaminar distribution of cerebrosides in human frontal cortex. J. Neurochem. 12, 213, 1965.PubMedCrossRefGoogle Scholar
  14. 13.
    Morell, P., Costantino-Ceccarini, E. and Radin, N. S. The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids. Arch. Biochem. Biophys. 141, 738, 1970.PubMedCrossRefGoogle Scholar
  15. 14.
    Morell, P. and Radin, N. S. Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry 8, 506, 1969.PubMedCrossRefGoogle Scholar
  16. 15.
    Morell, P. and Radin, N. S. Specificity in ceramide biosynthesis from long chain bases and various fatty acyl Coenzyme A’s by brain microsomes. J. Biol. Chem. 245, 342, 1970.PubMedGoogle Scholar
  17. 16.
    Norton, W. T. and Autilio, L. A. The lipid composition of purified bovine brain myelin. J. Neurochem. 13, 213, 1966.PubMedCrossRefGoogle Scholar
  18. 17.
    Norton, W. T. and Poduslo, S. E. Neuronal perikarya and astroglia of rat brain: chemical composition during myelination. J. Lipid Res. 12, 84, 1971.PubMedGoogle Scholar
  19. 18.
    Radin, N. S.’and Akahori, Y. Fatty acids of human brain cerebrosides. J. Lipid Res. 2, 335, 1961.Google Scholar
  20. 19.
    Raghavan, S. and Kanfer, J. N. Compositional studies on ceramide galactoside of enriched glial and neuronal cell fractions from rat brain. Trans. Am. Soc. Neurochem. 2, 101, 1971.Google Scholar
  21. 20.
    Sellinger, O. Z., Azcurra, J. M., Johnson, D. E., Ohlsson, W. and Lodin, Z. Independence of protein synthesis and drug uptake in nerve cell bodies and glial cells isolated by a new technique. Nature New Biol. 230, 253, 1971.PubMedCrossRefGoogle Scholar
  22. 21.
    Shah, S. N. Glycosyl transferases of microsomal fractions from brain: synthesis of glucosyl ceramide and galactosyl ceramide during development and the distribution of glucose and galactose transferase in white and grey matter. J. Neurochem. 18, 395, 1971.PubMedCrossRefGoogle Scholar
  23. 22.
    Sribney, M. Enzymatic synthesis of ceramide. Biochim. Biophys. Acta 125, 542, 1966.CrossRefGoogle Scholar
  24. 23.
    Suzuki, K., Poduslo, S. E. and Norton, W. T. Gangliosides in the myelin fraction of developing rats. Biochim. Biophys. Acta 144, 375, 1967.CrossRefGoogle Scholar
  25. 24.
    Svennerholm, L. and Stdllberg-Stenhagen, S. Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age. J. Lipid Res. 9, 215, 1968.PubMedGoogle Scholar
  26. 25.
    Wenger, D. A., Petitpas, J. W. and Pierenger, R. A. Biosynthesis of monogalactosyl diglyceride from uridine diphosphate galactose and diglyceride in brain. Biochemistry 7, 3700, 1968.PubMedCrossRefGoogle Scholar
  27. 26.
    Woolfolk, C. A. and Stadtman, E. R. Cumulative feedback inhibition in the multiple end product regulation of glutamine synthetase activity in Escherichia coli. Biochem. Biophys. Res. Commun. 17, 313, 1964.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • Norman S. Radin
    • 1
  1. 1.Mental Health Research InstituteUniversity of MichiganUSA

Personalised recommendations