Optical Transport Experiments in Heterostructures

  • R. A. Höpfel
  • R. Christanell
  • S. Juen
  • N. Sawaki
Part of the NATO ASI Series book series (NSSB, volume 206)


Various transport processes in GaAs/AlGaAs heterostructures are investigated by optical techniques using ultrashort laser pulses.

  1. (1)

    The transfer of optically injected electron-hole populations in single heterostructures from AlGaAs to GaAs is observed by studying the luminescence above the AlGaAs bandgap. The technique of “population correlation” allows time-resolved luminescence experiments also at low emission intensities. We find that the “thermal emission” of carriers from AlGaAs to GaAs is limited by ambipolar diffusion, leading to transfer times of 5 to 11 ps depending on the layer thickness.

  2. (2)

    In double-quantum-well structures consisting of quantum wells with two different well widths the tunneling times from the narrow well (higher ground state) to the wide well are quantitatively measured. The tunneling times are of the order of 200 ps, due to the barrier width and the nonresonant process which requires additional phonon emission or absorption for momentum conservation.

  3. (3)

    Electron-hole scattering in quantum wells leads to negative mobility of minority carriers in modulation-doped structures due to the “carrier drag” effect. Recently we could observe also the negative photoconductivity associated with the negative mobility. Quantitative evaluation gives more exact values on electron-hole momentum scattering times.

  4. (4)

    Photoluminescence from materials for subpicosecond photoconductors (radiation-damaged Ga0·47In0·53As) gives direct information on the ultrafast recombination processes. Decay times of 0.9 ps are observed, as well as evidence for extreme nonequilibrium carrier distributions (“inverted” luminescence spectra).



Luminescence Spectrum Minority Carrier Ambipolar Diffusion Tunneling Time Intersubband Transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Tsuchiya, T. Matsusue, and H. Sakaki, Phys. Rev. Lett. 59, 2356 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    J. Shah, IEEE Journal of Quantum Electronics 24, 276 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    D. Rosen, A.G. Doukas, Y. Budansky, A. Katz, and R.R. Alfano, Appl. Phys. Lett. 39, 935 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    D. von der Linde, J. Kuhl, and E. Rosengart, J. Luminescence 24/25 675 (1981).Google Scholar
  5. 5.
    A. Von Lehmen, J.M. Ballantyne, Appl. Phys. Lett. 44, 87 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Valdmanis, R.L. Fork, and J.P. Gordon, Optics Lett. 10, 131 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    R.A. Höpfel, J. Shah, T.Y. Chang, and N.J. Sauer, Appl. Phys. Lett. 51, 1815 (1987). s R. Christanell, R.A. Höpfel, J. Appl. Phys. (submitted).Google Scholar
  8. 9.
    J. Shah, B. Deveaud, T.C. Damen, and W.T. Tsang, Phys. Rev. Lett. 59, 2222 (1987).ADSCrossRefGoogle Scholar
  9. 10.
    T. Tada, A. Yamaguchi, T. Ninomiya, H. Uchiki, T. Kobayashi, and T. Yao, J. Appl. Phys. 63, 5491 (1988).ADSCrossRefGoogle Scholar
  10. 11.
    N. Sawaki, M. Suzuki, Y. Takagaki, H. Goto, I. Akasaki, H. Kano, Y. Tanaka, and M. Hashimoto, Superlattices and Microstructures 2, 281 (1986); N. Sawaki, M. Suzuki, E. Okuno, H. Goto, I. Akasaki, H. Kano, Y. Tanaka, and M. Hashimoto, Solid State Electronics 31, 351 (1988).CrossRefGoogle Scholar
  11. 12.
    H. Kano, Y. Tanaka, N. Sawaki, M. Hashimoto, and I. Igarashi, J. Cryst. Growth 81, 144 (1987).ADSCrossRefGoogle Scholar
  12. 13.
    S.W. Kirchoefer, R. Magno, and J. Comas, Appl. Phys. Lett. 44, 1054 (1984).ADSCrossRefGoogle Scholar
  13. 14.
    J.M. Pond, S.W. Kirchhoefer, and E.J. Cukauskas, Appl. Phys. Lett. 47, 1175 (1985).ADSCrossRefGoogle Scholar
  14. 15.
    N. Sawaki, and I. Akasaki, Physica 134B, 494 (1985).Google Scholar
  15. 16.
    B. Deveaud, J. Shah, T.C. Damen, W.T. Tsang, Appl. Phys. Lett. 52, 1886 (1988).ADSCrossRefGoogle Scholar
  16. 17.
    N. Sawaki, R.A. Höpfel, E. Gornik, and H. Kano, Appl. Phys. Lett. (submitted).Google Scholar
  17. 18.
    U. Cebulla, G. Bacher, G. Mayer, A. Forchel, W.T. Tsang, and M. Razeghi, Superlattices and Microstructures 5, 227 (1989).ADSCrossRefGoogle Scholar
  18. 19.
    M. Tsuchiya, T. Matsusue, and H. Sakaki, Phys. Rev. Lett. 59, 2356 (1987).ADSCrossRefGoogle Scholar
  19. 20.
    M.K. Jackson, M.B. Johnson, D.H. Chow, T.C. McGill, and C.W. Nieh, Appl. Phys. Lett. 54, 552 (1989).ADSCrossRefGoogle Scholar
  20. 21.
    M.G.W. Alexander, W.W. Ruehle, R. Sauer, and W.T. Tsang (preprint).Google Scholar
  21. 22.
    D.Y. Oberli, D.R. Wake, M.V. Klein, J. Klem, T. Henderson, and H. Morkoc, Phys. Rev. Lett. 59, 696 (1987).ADSCrossRefGoogle Scholar
  22. 23.
    A. Seilmeier, M. Wörner, G. Abstreiter, G. Weimann, and W. Schlapp, Superlattices and Microstructures 5, (1989).Google Scholar
  23. 24.
    K. Leo, W.W. Ruehle, and K. Ploog, Phys. Rev. B38, 1947 (1988).ADSCrossRefGoogle Scholar
  24. 25.
    J.H. English, A.C. Gossard, H.L. Störmer, and K.W. Baldwin, Appl. Phys. Lett. 50, 1826 (1987).ADSCrossRefGoogle Scholar
  25. 26.
    R.A. Höpfel, J. Shah, P.A. Wolff, and A.C. Gossard, Phys. Rev. Lett. 56, 2736 (1986).ADSCrossRefGoogle Scholar
  26. 27.
    R.A. Höpfel, J. Shah, P.A. Wolff, and A.C. Gossard, Phys. Rev. Br, 6941 (1988).Google Scholar
  27. 28.
    M.J. Chou, D.C. Tsui, and G. Weimann, Appl. Phys. Lett. 47, 609 (1985).ADSCrossRefGoogle Scholar
  28. 29.
    R.A. Höpfel, Appl. Phys. Lett. 52, 801 (1988).Google Scholar
  29. 30.
    R.A. Höpfel, S. Juen, J. Shah, and A.C. Gossard, Superlattices and Microstructures 5, 15 (1989).ADSCrossRefGoogle Scholar
  30. 31.
    W. Cai, T.F. Zheng, and M. Lax, Phys. Rev. B37, 8205 (1988).ADSCrossRefGoogle Scholar
  31. 32.
    D.C. Tsui, A.C. Gossard, G. Kaminsky, and W. Wiegmann, Surf. Sci. 113, 464 (1982).ADSCrossRefGoogle Scholar
  32. 33.
    For a review, see D.H. Auston in “Ultrashort Laser Pulses and Applications” (Editor: W. Kaiser ), Springer—Verlag, Berlin 1988, p. 183–233.Google Scholar
  33. 34.
    “GaInAsP Alloy Semiconductors”,(Editor: T.P. Pearsall), John Wiley & Sons, New York 1982.Google Scholar
  34. 35.
    K.Y. Cheng, A.Y. Cho, S.B. Christman, T.P. Pearsall, and J.E. Rowe, Appl Phys. Lett. 40, 423 (1982).ADSCrossRefGoogle Scholar
  35. 36.
    P.M. Downey, R.J. Martin, R.E. Nahory, O.G. Lorimor, Appl. Phys. Lett. 46, 396 (1985).ADSCrossRefGoogle Scholar
  36. 37.
    F.E. Doany, D. Grischkowsky, and C.C. Chi, in “Picosecond Electronics and Optoelectronics II” (Editors: F.J. Leonberger, C.H. Lee, F. Capasso and H. Morkoc), Springer Series in Electronics and Photonics 24, 228 (1987).CrossRefGoogle Scholar
  37. 38.
    J. Shah, IEEE J. Quantum Electron. QE-24 276 (1988).Google Scholar
  38. 39.
    For an arbitrary time—dependence of the distribution functions, the correlation curves I(r) must be fitted numerically, with certain assumptions on the rising onset of the luminescence.Google Scholar
  39. 40.
    J. Shah, Solid State Electron. 21, 43 (1978).ADSCrossRefGoogle Scholar
  40. 41.
    J.C. Kash, J.C. Tsang, and J.M. Hvam, Phys. Rev. Lett. 54, 2151 (1985).ADSCrossRefGoogle Scholar
  41. 42.
    K. Kash and J. Shah, Appl. Phys. Lett. 45, 401 (1984).ADSCrossRefGoogle Scholar
  42. 43.
    J. Shah, B. Deveaud, T.C. Damen, W.T. Tsang, A.C. Gossard, and P. Lugli, Phys. Rev. Lett. 59, 2222 (1987).ADSCrossRefGoogle Scholar
  43. 44.
    E. Gornik, Phys. Rev. Lett. 29, 595 (1972).ADSCrossRefGoogle Scholar
  44. 45.
    R.A. Höpfel, G. Weimann, Appl. Phys. Lett. 46, 291 (1985).ADSCrossRefGoogle Scholar
  45. 46.
    E. Gornik, D.C. Tsui, Phys. Rev. Lett. 37, 1425 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • R. A. Höpfel
    • 1
  • R. Christanell
    • 1
  • S. Juen
    • 1
  • N. Sawaki
    • 1
  1. 1.Institut für ExperimentalphysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations