Aspects of the Growth of InP/InGaAs Multi-Quantum Well Structures by Gas Source Molecular Beam Epitaxy

  • G. J. Davies
  • E. G. Scott
  • M. H. Lyons
  • M. A. Z. Rejman-Greene
  • D. A. Andrews
Part of the NATO ASI Series book series (NSSB, volume 206)


Gas Source MBE including Chemical Beam Epitaxy is shown to be a promising technique for the growth of heterostructures involving the incorporation of both arsenic and phosphorus species.

Planar quantum confined Stark effect modulators/detectors have been fabricated from InP/InGaAs multi-quantum well stacks containing 200 wells. The layer sequences have been analysed by both optical and double crystal X-ray techniques. The modulator structures have shown excellent uniformity of the grown layers in both the growth and lateral dimensions — properties which are essential for the fabrication of modulator arrays.

4×4 Arrays have been constructed and have shown state of the art modulation coupled with low leakage currents.


Molecular Beam Epitaxy Group Versus Layer Sequence Order Satellite Modulator Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W T Tsang, Appl Phys Lett., 49, 1010, 1986.ADSCrossRefGoogle Scholar
  2. 2.
    H Temkin, M B Panish and S N G Chu, Appl Phys Lett., 49, 859, 1986.ADSCrossRefGoogle Scholar
  3. 3.
    D A B Miller, D S Chemla, T H Wood, A C Gossard, W Wiegmann and C A Burrus, Phys Rev Lett., 53, 2173, 1984ADSCrossRefGoogle Scholar
  4. 4.
    D S Chemla, D A B Miller and P W Smith, Opt Eng., 24 556, 1985.Google Scholar
  5. 5.
    W T Tsang, IEEE CircundDev., to be published.Google Scholar
  6. 6.
    G J Davies and D A Andrews, Chemtronics, 3, 3, 1988.Google Scholar
  7. 7.
    Y Kawaguchi, H Asahi and H Nagai, Conf. on Solid State Devices, Tokyo 1986, 619.Google Scholar
  8. 8.
    JS Foord(Univ Oxford) private communication.Google Scholar
  9. 9.
    E G Scott, D A Andrews and G J Davies, J Crystal Growth, 81, 296, 1987.ADSCrossRefGoogle Scholar
  10. 10.
    E G Scott, S T Davey, M A G Halliwell and G J Davies, J Vac Sci Technol., B6, 603, 1988.CrossRefGoogle Scholar
  11. 11.
    W J Bartels, J Vac Sci Technol., 81, 338, 1983.Google Scholar
  12. 12.
    M B Panish, J Crystal Growth, 81, 249, 1987.ADSCrossRefGoogle Scholar
  13. 13.
    P A Claxton, J S Roberts, J P R David, C M Sotomayor -Torres, M S Skolnick, P R Tapster and K J Nash, J Crystal Growth, 81, 288, 1987.ADSCrossRefGoogle Scholar
  14. 14.
    W T Tsang, J Crystal Growth, 81, 261, 1987.ADSCrossRefGoogle Scholar
  15. 15.
    M S Skolnick, P R Tapster, S J Bass, A D Pitt, N Apsley and S P Aldred, Semicond Sci Technol, 1, 29, 1986.ADSCrossRefGoogle Scholar
  16. 16.
    W Stolz, J Wagner and K Ploog, J Crystal Growth, 81, 79, 1987.ADSCrossRefGoogle Scholar
  17. 17.
    M H Lyons and M A G Halliwell, Advanced Materials for Telecommunications eds P A Glasgow, Y I Nissim, J-P Noblanc and J Speight (Paris:Les Editions de Physique), 323, 1986.Google Scholar
  18. 18.
    J M Vandenberg, R A Hamm, A T Macrander, M B Panish and H Temkin, Appl Phys Lett., 48, 1153, 1986. J M Vandenberg, M B Panish, H Temkin and R A Hamm, Appl Phys Lett., 53, 1920, 1988.ADSCrossRefGoogle Scholar
  19. 19.
    M H Lyons J Crystal Growth 1989 in press.Google Scholar
  20. 20.
    P F Fewster, Philips J Res., 41, 338, 1986.Google Scholar
  21. 21.
    M H Lyons, E G Scott and M A G Halliwell, ‘Microscopy of Semicond. Mats.’ Inst Phys Conf Ser., 1989, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • G. J. Davies
    • 1
  • E. G. Scott
    • 1
  • M. H. Lyons
    • 1
  • M. A. Z. Rejman-Greene
    • 1
  • D. A. Andrews
    • 1
  1. 1.Martlesham HeathBritish Telecom Research LaboratoriesIpswichUK

Personalised recommendations