Advertisement

Magneto-Optical Study of Miniband Dispersion and Excitonic Effects in GaAs/GaAlAs Superlattices

  • B. Deveaud
  • A. Chomette
  • F. Clérot
  • A. Regreny
  • R. Romestain
  • J. C. Maan
  • G. Bastard
  • Hanyou Chu
  • Yia Chung Chang
Part of the NATO ASI Series book series (NSSB, volume 206)

Abstract

The luminescence excitation spectra of GaAs/GaAlAs superlattices show new structures when their period is such that the miniband width for electrons is of the order of 10 meV. The experimental spectra are remarkably reproduced by theoretical calculations, and we are then able to give an assignement to these structures. In particular, new excitonic transitions are observed which might be the equivalent of saddle-point excitons. We have performed excitation studies under magnetic field in both Faraday and Voigt configurations in order to check the different attributions. Confirmation of the excitonic character of the new peaks is obtained. When the superlattice period decreases, the exciton binding energy is observed to decrease and the miniband width to increase.

Keywords

Landau Level Exciton Binding Energy Luminescence Excitation Spectrum Excitonic Line Superlattice Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Knox R., Theory of Excitons, Solid Sate Physics, Ed. F. Seitz, D. Turnbull, Supp. 5 ( Academic press, NY 1963 )Google Scholar
  2. 2.
    R.J. Elliott, Phys. Rev., 108, 1384 (1957)ADSCrossRefGoogle Scholar
  3. 3.
    S. Schmidt Rink, Phys. Rev., B33, 1183 (1986)ADSGoogle Scholar
  4. 4.
    M.S. Skolnick, J.M. Rorison, K.J. Nash, D.J. Mowbray, P.R. Tapster, S.J. Bass, A.D.Pitt, Phys. Rev. Lett., 58, 2130 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    J.C. Phillips, in Solid State Physics, Ed. F. Seitz and D. Turnbull (Academic Press, NY 1966 ) Vol. 18, p55Google Scholar
  6. 6.
    C.B. Duke, B. Segall, Phys. Rev. Lett., 17, 19 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    B. Velicky, J. Sak, Phys. Stat. Sol., 16, 147 (1966)ADSCrossRefGoogle Scholar
  8. 8.
    E.O. Kane, Phys. Rev.B, 180, 852 (1969)ADSCrossRefGoogle Scholar
  9. 9.
    I. Baslev, Solid State Commun., 52, 351 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Phillips, Phys. Rev. 136, 2949 (1964)Google Scholar
  11. 11.
    D.T.F. Marple, H. Ehrenreich, Phys. Rev. Lett., 8, 87 (1962)ADSCrossRefGoogle Scholar
  12. 12.
    G. Baldini, Phys. Rev., 128, 1562 (1962)ADSCrossRefGoogle Scholar
  13. 13.
    H. Chu, Y. C. Chang, Phys. Rev. B36, 2946 (1987)ADSGoogle Scholar
  14. 14.
    J. Kervarrec, M. Baudet, J. Caulet, P. Auvray, J.Y. Emery, A. Regreny, J. Appl. Cryst.Google Scholar
  15. 15.
    B. Deveaud, J.Y. Emery, A. Chomette., B. Lambert, A. Regreny, Appl. Phys. Lett. 45, 1078 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    A. Chomette, B. Deveaud, A. Regreny, G. Bastard, Phys. Rev. Lett. 57, 1464 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    B. Deveaud, A. Regreny, J.Y. Emery, A. Chomette, J. Appl. Phys., 59, 1633 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    A. Chomette, B. Lambert, B. Deveaud, F. Clérot, A. Regreny, G. Bastard, Europhys. Lett., 4, 461 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    A. Chomette, B. Lambert, B. Clerjaud, F. Clérot, F. Liu, A. Regreny, J. Semicond. Science and Technol., 3, 351 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    M. Krahl, J. Christen, D. Bimberg, Appl. Phys. Lett., 52, 798 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    K. Ploog in Physics and applications of quantum wells and superlattices, Ed. E.E. Mendez, K. von Klitzing, NATO series Vol. 170, Plenum, NY, 1987, p43Google Scholar
  22. 22.
    A. Chomette, B. Deveaud, B. Lambert, F. Clérot, A. Regreny, to be publishedGoogle Scholar
  23. 23.
    K. Moore, G. Duggan, P. Dawson, C.T. Foxon, to be published in Superlatt. Microstruc. Microdev.Google Scholar
  24. 24.
    B. Deveaud, A. Regreny, M. Baudet, A. Chomette, J.C. Maan, R. Romestain, Proc. 18th Int. Conf. on the Physics of Semiconductors, Ed. Engstrom, World Scientific Pub., Singapore, 1987, p. 695Google Scholar
  25. 25.
    J.J. Song, P.S. Jung, Y.S. Yoon, H. Chu, Y.C. Chang, C.W. Tu, Phys. Rev., B39, 5562 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    B. Deveaud, A. Chomette, F. Clérot, A. Regreny, J.C. Maan, R. Romestain, G. Bastard, H. Chu, Y.C. Chang, (to be published)Google Scholar
  27. 27.
    R.C. Miller, D.A. Kleinman, W.T. Tsang, A.C. Gossard, Phys. Rev. B24, 1134 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    Y.S. Yoon, P.S. Jung, J.J. Song, J.N. Schulman, C.W. Tu, H. Morkoc, Bull. Am. Phys. Soc., 33, 365 (1988)Google Scholar
  29. 29.
    We observed equivalent structures in all samples of equivalent period that we have studied: see for example Fig. in B. Deveaud, J. Shah, T.C. Damen, B. Lambert, A. Chomette, A. Regreny, IEEE, QE26, (1988)Google Scholar
  30. 30.
    F. Clérot, B. Deveaud, A. Chomette, B. Lambert, A. Regreny A., to be publishedGoogle Scholar
  31. 31.
    We only allow for a small rigid shift in order to superimpose the HH excitonic peaks.Google Scholar
  32. 32.
    A. Fasolino, M. Altarelli, in Two-Dimensional Systems, Heterostructures and Superlattices, Ed. G. Bauer, F. Kuchar, H. Heinrich ( Springer Verlag, NY 1984 )Google Scholar
  33. 33.
    D.M. Woodruff, S.M. Anlage, D.L. Smith, Phys. Rev., B36, 1725 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    H. Chu, Y.C. Chang, to be published.Google Scholar
  35. 35.
    A. Chomette, B. Lambert, B. Deveaud, F. Clérot, A. Regreny, G. Bastard, Europhys. Lett., 4, 461 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Maan, A. Fasolino, G. Belle, M. Altarelli, K. Ploog, Physica 127B, 426 (1984)CrossRefGoogle Scholar
  37. 37.
    N. Miura, Y. Iwasa, S. Tarucha, H. Okamoto, Proc. 17th Int. Conf. Phys. Semicond., (1985)Google Scholar
  38. 38.
    P. Dawson, K.J. Moore, G. Duggan, H.I. Ralph, C.T.B. Foxon, Phys. Rev., B34, 6007 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    D.0 Rogers, J. Singleton, R.J. Nicholas, C.T.B. Foxon, K. Woodbridge, Phys. Rev., B34, 4002 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    Akimoto, H. Hasegawa, J. Phys. Soc. Japan, 22, 181 (1967)Google Scholar
  41. 41.
    F. Ancilotto, A. Fasolino, J.C. Maan, Phys. Rev., B38, 1788 (1988)ADSCrossRefGoogle Scholar
  42. 42.
    S.R. Eric Yang, L.J. Sham, Phys. Rev. Lett., 58, 2598 (1987)ADSCrossRefGoogle Scholar
  43. 43.
    G. Duggan, Phys. Rev., B37, 2759 (1988)ADSCrossRefGoogle Scholar
  44. 44.
    J.C. Maan, G. Belle, A. Fasolino, M. Altarelli, K. Ploog, Phys. Rev., B30, 2253 (1984)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    A.S. Plaut, J. Singleton, R.J. Nicholas, R.T. Harley, S.R. Andrews, C.T.B. Foxon, Phys. Rev., B38, 1323 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    Let us note here that our results are in apparent contradiction with the value very recently obtained by two photon absorption: K. Tai, A. Mysyrowicz, R.J. Fisher, R.E. Slusher, A.Y. Cho, Phys. Rev. Lett., 62, 1784 (1989). We have no explanation yet for this discrepancy.Google Scholar
  47. 47.
    J.C. Maan in Physics and applications of quantum wells and superlattices, Ed. E.E. Mendez, K. von Klitzing, NATO series Vol. 170, Plenum, NY, 1987, p347.Google Scholar
  48. 48.
    Except for the very short period SLs where only one peak is resolved: as in bulk GaAs or GaAlAs there is no HH-LH splitting.Google Scholar
  49. 49.
    A new series is only observed clearly for HH transitions as the LH transitions are washed out in the high energy part of the spectrum.Google Scholar
  50. 50.
    The lines in the figure are not the result of a fit and we only consider them as an indication of the origin of the different transitions. As a consequence, we do not consider the extrapolation point energy to be very precise but rather to give an approximate energy range. However, we have taken care, in the drawing of the lines to change their slope by one cyclotron energy.Google Scholar
  51. 51.
    J.C. Maan, Festkorperprobleme 27, Ed. P. Grosse, p137 (1987)Google Scholar
  52. 52.
    G. Belle, J.C. Maan, G. Weimann, G. Belle, J.C. Maan, G. Weimann, Solid State Commun., 56, 65 (1985)ADSCrossRefGoogle Scholar
  53. G. Belle, J.C. Maan, G. Weimann, G. Belle, J.C. Maan, G. Weimann, Surf. Sci., 170, 611 (1986)ADSCrossRefGoogle Scholar
  54. 53.
    A. Fasolino, M. Altarelli, in Band structure engineering in semiconductor microstructures,Eds. R.A. Abram, M. Jaros, Plenum Press, in printGoogle Scholar
  55. 54.
    T. Duffield, R. Bhat, M. Koza, F. DeRosa, D.M. Hwang, P. Grabbe, S.J. Allen Jr, Phys. Rev. Lett., 56, 2724 (1986)ADSCrossRefGoogle Scholar
  56. 55.
    Calculations using the model proposed by Fasolino and Altarelli36 are being performed.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • B. Deveaud
    • 1
  • A. Chomette
    • 1
  • F. Clérot
    • 1
  • A. Regreny
    • 1
  • R. Romestain
    • 2
  • J. C. Maan
    • 3
  • G. Bastard
    • 4
  • Hanyou Chu
    • 5
  • Yia Chung Chang
    • 5
  1. 1.LAB/OCMC.N.E.T.LannionFrance
  2. 2.Laboratoire de Spectrométrie PhysiqueUSMGGrennobleFrance
  3. 3.Max Planck Inst.GrenobleFrance
  4. 4.E.N.S.ParisFrance
  5. 5.University of IllinoisUrbanaUSA

Personalised recommendations