Can We Tune the Band Offset at Semiconductor Heterojunctions?

  • Stefano Baroni
  • Raffaele Resta
  • Alfonso Baldereschi
  • Maria Peressi
Part of the NATO ASI Series book series (NSSB, volume 206)


The long-standing problem of determining which interface-specific properties affect the band offset at semiconductor heterojunctions is readdressed using a newly developed theoretical approach. The actual interface is considered as a perturbation with respect to a reference periodic system (virtual crystal). By comparison with state-of-the-art self-consistent calculations, we show that linear-response theory provides a very accurate description of the electronic structure of the actual interface in a variety of cases, and sheds light on the mechanisms responsible for the band offset. Results are presented for a number of lattice-matched junctions, both isovalent and heterovalent. It is shown that—within linear response theory—band offsets are genuine bulk properties for isovalent interfaces, whereas they do depend on the atomic structure of the junction for polar interfaces between heterovalent semiconductors. In the latter case, however, the interface-dependent contribution to the offset can be calculated—once the microscopic geometry of the junction is known—from such simple quantities as the lattice parameters and dielectric constants of the constituents. Perspectives for extending the theory to non-lattice-matched systems are also briefly discussed.


Polar Interface Actual Interface Density Response Band Offset Interface Dipole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
  2. [2]
    See for instance the volume: Heterojunction Band Discontinuities, edited by F. Capasso and G. Margaritondo ( North-Holland, Amsterdam, 1987 ).Google Scholar
  3. [3]
    L. Kleinman Phys. Rev. B 24, 7412 (1981).ADSCrossRefGoogle Scholar
  4. [4]
    R. Resta, S. Baroni, and A. Baldereschi, Superlattices and Microstr. 5, X XXX (1989)Google Scholar
  5. S. Baroni, R. Resta, and A. Baldereschi. Proc. 19 th Int. Conf. on THE PHYSICS OF SEMICONDUCTORS, edited by W. Zawadzki ( Institute of Physics, Polish Academy of Sciences, Wroclaw, 1988 ), p. 525.Google Scholar
  6. [5]
    A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett. 61, 734 (1988).ADSCrossRefGoogle Scholar
  7. [6]
    R.W. Godby, M. Schlüter and L.J. Sham, Phys. Rev. B 37, 10159 (1988).ADSCrossRefGoogle Scholar
  8. [7]
    S.B. Zhang, D.Tomânek, and S.G. Louie, Solid State Commun. 66, 585 (1988).ADSCrossRefGoogle Scholar
  9. [8]
    J. D. Jackson Classical Electrodynamics ( Wiley, New York, 1975 ).Google Scholar
  10. [9]
    F. N. H. Robinson, Macroscopic Electromagnetism ( Pergamon, Oxford, 1973 ).Google Scholar
  11. [10]
    R. Resta, in: Festkörperprobleme, vol. XXV, edited by P. Grosse ( Vieweg, Braunschweig, 1985 ), p. 183.Google Scholar
  12. [11]
    D.M. Bylander and L. Kleinman, Phys. Rev. B 34, 5280 (1986)ADSCrossRefGoogle Scholar
  13. D.M. Bylander and L. Kleinman, ibid. 36, 3229 (1987)Google Scholar
  14. D.M. Bylander and L. Kleinman, Phys. Rev. Lett. 59, 2091 (1987).ADSCrossRefGoogle Scholar
  15. [12]
    All the SCF results presented in this paper have been obtained within the local-density approximation (LDA), using norm conserving pseudopotentials and plane-wave basis sets. The technical ingredients are the same as in Refs. 4,5.Google Scholar
  16. [13]
    Of course, the value of the limit depends on the actual prescription chosen. A “good” choice is one which provides average values such that differences of them are good approximations to the interface potential lineups.Google Scholar
  17. [14]
    C. Van de Walle and R.M. Martin, Phys. Rev. B 35, 8154 (1987).ADSCrossRefGoogle Scholar
  18. [15]
    Intuitively, this is simply related to the difference between the “left” and “right” q → 0 Fourier transform of 0R,, i.e. to their averages in two macroscopic regions far from and on opposite sides of the interface.Google Scholar
  19. [16]
    W.I. Wang and F. Stern J. Vac. Sci. Techn B 3, 1280 (1985)CrossRefGoogle Scholar
  20. D. Arnold, A. Ketterson, T. Henderson, J. Klem, and H. Morkoc, J. Appl. Phys. 57, 2880 (1985)ADSCrossRefGoogle Scholar
  21. G. Danan, B. Etienne, F. Mollot, R. Planal, A.M. Jean-Luois, F. Alexandre, B. Jusserand, G. Le Roux, J.Y. Marzin, H. Savary, and B. Sermage, Phys. Rev. B 35, 6207 (1987).ADSCrossRefGoogle Scholar
  22. [17]
    D.V. Lang, M.B. Panish, F. Capasso, J. Allam, R.A. Hamm, A.M. Sergent, and W.T. Tsang, Appl. Phys. Lett. 50, 736 (1987).ADSCrossRefGoogle Scholar
  23. [18]
    K. Kunc and R.M. Martin, Phys. Rev. B 35, 8154 (1987).ADSCrossRefGoogle Scholar
  24. [19]
    R.W. Grant, J.R. Waldrop, and E.A. Kraut, Phys. Rev. Lett. 40, 656 (1978)ADSCrossRefGoogle Scholar
  25. J.R. Waldrop, E.A. Kraut, S.P. Kowalczyk, and R.W. Grant, Surf. Sci. 132, 513 (1983).ADSCrossRefGoogle Scholar
  26. [20]
    C.G. Van de Walle and R.M. Martin, Phys. Rev. Lett. 62, 2028 (1989).ADSCrossRefGoogle Scholar
  27. [21]
    R. Resta and S. Baroni, Bull. Am. Phys. Soc. 34 (3), 832 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Stefano Baroni
    • 1
  • Raffaele Resta
    • 1
    • 2
  • Alfonso Baldereschi
    • 2
    • 3
  • Maria Peressi
    • 1
  1. 1.Scuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
  2. 2.Institut Romand de Recherche Numérique en Physique des Materiaux (IRRMA)Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Dipartimento di Fisica Teorica dell’Università di TriesteTriesteItaly

Personalised recommendations