Advertisement

Structural and Optical Properties of Periodic Fibonacci Superlattices

  • D. Paquet
  • M. C. Joncour
  • B. Jusserand
  • F. Laruelle
  • F. Mollot
  • B. Etienne
Part of the NATO ASI Series book series (NSSB, volume 206)

Abstract

After the discovery of quasicrystals exhibiting fivefold symmetry and thus a lack of periodic long range order(1), a good deal of work has been performed to understand the crystallography of such structures and the nature of their elementary excitations. The main results are that the Fourier transform of the quasilattice (which generalizes the notion of periodic reciprocal space) is made of a dense but countable (d.c.) set of delta functions(2,3), and that the allowed energies for excitations span a Cantor set(4,5). The simplest models were developped for the paradigmic one dimensional (1D) quasicrystal: the Fibonacci superlattice.

Keywords

Reciprocal Lattice Reciprocal Space Fibonacci Sequence Absolute Index Fivefold Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    D. Shechtman, I. Blecht, D. Grattas and J.W. Cahn. Phys. Rev. Lett. 53, 1961 (1984)ADSCrossRefGoogle Scholar
  2. 2).
    D. Levine and P.J. Steinhardt. Phys. Rev. Lett. 53, 2477 (1984)ADSCrossRefGoogle Scholar
  3. 3).
    M. Duneau and A. Katz. Phys. Rev. Lett. 56, 1168 (1986)CrossRefGoogle Scholar
  4. 4).
    M. Khomoto, L.P. Kadanoff and C. Tang. Phys. Rev. Lett. 50, 1870 (1983)ADSCrossRefGoogle Scholar
  5. 5).
    S. Ostlund, R. Pandit, D. Rand, H.J. Shellnhuber E.D. Siggia. Phys. Rev. Lett. 50, 1873 (1983)MathSciNetADSCrossRefGoogle Scholar
  6. 6).
    R. Merlin, K. Bajema, R. Clarke, F.Y. Jung and P.K. Bhattacharya. Phys. Rev. Lett. 55, 1768 (1985)ADSCrossRefGoogle Scholar
  7. 7).
    T. Todd, R. Merlin, R. Clarke, K.M. Mohanly and J.D. Axe. Phys. Rev. Lett. 57, 1157 (1986)ADSCrossRefGoogle Scholar
  8. 8).
    M.W.0 Dharma-warnada, A.H. MacDonald, D.J. Lockwood, J.M. Baribeau and D.C. Houghton. Phys. Rev. Lett. 58, 1761 (1987)ADSCrossRefGoogle Scholar
  9. 9).
    K. Bajema, R. Merlin. Phys. Rev. B36, 4555 (1987)ADSGoogle Scholar
  10. 10).
    R. Merlin, K. Bajema, R. Clarke and J. Todd, in Proceedings of the 18th International Conference on the Physics of Semiconductors, Stockholm, 1986, edited by O. Engström ( Word Scientific, Singapore, 1987 ), p 675Google Scholar
  11. 11).
    F. Lamelle and B. Etienne. Phys. Rev. B37, 4816 (1988)ADSCrossRefGoogle Scholar
  12. 12).
    L. Fibonacci, in Liber Abaci (Pisa, 1202 )Google Scholar
  13. 13).
    Diophantes, in Arithmetica (Alexandria, = 350)Google Scholar
  14. 14).
    D. Paquet, M.C. Joncour, F. Mollot and B. Etienne. Phys. Rev. B, in press (15 May 1989). A preliminary version can be found in Proceedings of the 19th International Conference on the Physics of Semiconductors, Warsaw 1988,edited by W. Zawadski (Polish Academy of Science 1988) p 357Google Scholar
  15. 15).
    B. Jusserand, F.Mollot, M.C. Joncour, B. Etienne, in Proceedings of the 18th International Conference on Modulated Semiconductors Structures, Montpellier 1987, J. de Phys. (Paris). Colloq 48 C5–577 (1987)Google Scholar
  16. 16).
    F. Lamelle, V. Thierry-Mieg, M.C. Joncour and B. Etienne, in Proceedings of the 18d. International Conference on Modulated Semiconductors Structures Montpellier 1987, J. de Phys. (Paris). Colloq 48 C5–529 (1987)Google Scholar
  17. 17).
    M.C. Joncour, D. Paquet, F. Lamelle, F. Mollot, B. Etienne. Zeitschrift für Kristallographie 185, 447 (1988)Google Scholar
  18. 18).
    B. Jusserand, D. Paquet, F. Mollot, M.C. Joncour and B. Etienne. Phys. Rev. B39, 3683 (1989)ADSCrossRefGoogle Scholar
  19. 19).
    C. Colvard, T.A. Gant, M.V. Klein, R. Merlin, R. Fisher, H. Morkoc and A.C. Gossard. Phys. Rev. B31, 2080 (1985)ADSCrossRefGoogle Scholar
  20. 20).
    B. Jusserand and D. Paquet. Phys. Rev. Lett. in press (May 1989)Google Scholar
  21. 21).
    B. Jusserand and D. Paquet, in Heterojunctions and Semiconductor Superlattices, edited by G. Allan, G. Bastard, N. Boccara, M. Lanoo and M. Voos (Springer 1986 ), p 108CrossRefGoogle Scholar
  22. 22).
    B. Jusserand, D. Paquet, F. Mollot, F. Alexandre and G. Leroux. Phys. Rev. B35, 2808 (1987)ADSCrossRefGoogle Scholar
  23. 23).
    F. Lamelle. Phd Thesis. Université Paris Sud (Orsay) (1988) unpublished.Google Scholar
  24. 24).
    F. Lamelle, D. Paquet and B. Etienne, to be published in Proceedings of the 3d International Conference on Superlattices, Microstructures and Microdevices (Trieste 1988) Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • D. Paquet
    • 1
  • M. C. Joncour
    • 1
  • B. Jusserand
    • 1
  • F. Laruelle
    • 2
  • F. Mollot
    • 2
  • B. Etienne
    • 2
  1. 1.Laboratoire de BagneuxC.N.E.T.France
  2. 2.C.N.R.S.-L2MBagneuxFrance

Personalised recommendations