Advertisement

Abstract

In quantum chemistry one usually deals with many-electron systems, and the wave functions depend on the coordinates of all the electrons. Except for very special cases (like He, H2), the wave functions applied are constructed of one-electron functions as building blocks, requesting the many-electron wave functions to satisfy the Pauli principle (and trying, of course to get an approximation to the exact solution that is as good as possible).

Keywords

Spin Orbital Slater Determinant Occupied Orbital Spin Function Symmetry Adapt Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Zülicke, Quantenchemie, Deutcher Verlag der Wissenschaften, Berlin 1973.Google Scholar
  2. 2.
    R. McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, London 1992.Google Scholar
  3. 3.
    I. Mayer, Fejezetek a Kvantumkémikból, BME Mérnöktovâbbképzö Int., Budapest 1987.Google Scholar
  4. 4.
    J.C. Slater, Phys. Rev. 34, 1293 (1929)CrossRefGoogle Scholar
  5. 5.
    J.C. Slater, Phys. Rev. 38, 1109 (1931)CrossRefGoogle Scholar
  6. 6.
    E.U. Condon, Phys. Rev. 36, 1121 (1930)CrossRefGoogle Scholar
  7. 7.
    R-O. Löwdin, Phys. Rev. 97, 1470 (1955)Google Scholar
  8. 8.
    P.-O. Löwdin, J. Appl. Phys. Suppl. 33, 251 (1962)CrossRefGoogle Scholar
  9. 9.
    A. T. Amos and G. G. Hall, Proc. Roy. Soc. (London) A263, 483 (1961)Google Scholar
  10. 10.
    R. Pauncz, Alternant Molecular Orbital Method Saunders, Philadelphia 1967.Google Scholar
  11. 11.
    Y. I. Gorlov and I. I. Ukrainsky, Inst. for Theoretical Physics, Ukrainian Academy of Sciences, Preprints ITP-73–138 (1973) and ITP-74–69E (1974)Google Scholar
  12. 12.
    I. Mayer, Adv. Quantum Chem. 12, 189 (1980).CrossRefGoogle Scholar
  13. 13.
    I. Mayer, Int. J. Quantum Chem. 63, 31 (1997)CrossRefGoogle Scholar
  14. 14.
    A. Hamza and I. Mayer, Int. J. Quantum Chem. 82, 53, 105 (2001)Google Scholar
  15. 15.
    P. Karadakov, Int. J. Quantum Chem. 27, 699 (1985)CrossRefGoogle Scholar
  16. 16.
    I. Mayer, Int. J. Quantum Chem. 29, 31 (1986)CrossRefGoogle Scholar
  17. 17.
    I. Mayer, Chem. Phys. Letters, 89, 390 (1982)CrossRefGoogle Scholar
  18. 18.
    P.R. Surjân, I. Mayer and M. Kertész, J. Chem. Phys. 77, 2454 (1982)CrossRefGoogle Scholar
  19. 19.
    I. Mayer and P.R. Surjân, J. Chem. Phys. 80, 5649 (1984)CrossRefGoogle Scholar
  20. 20.
    I. Mayer and L. Turi, J. Molec. Struct. (Theochem), 227, 43 (1991)CrossRefGoogle Scholar
  21. 21.
    R. Pauncz, Spin Eigenfunctions, Plenum Press, New York 1979.CrossRefGoogle Scholar
  22. 22.
    P.-O. Löwdin, Phys. Rev. 97, 1490, 1510 (1955)Google Scholar
  23. 23.
    P. Jorgensen and J. Simons, Second Quantization-Based Methods in Quantum Chemistry, Academic Press, New York 1981.Google Scholar
  24. 24.
    P.R. Surjân, Second Quantized Approach to Quantum Chemistry, Springer, Berlin 1989.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • István Mayer
    • 1
  1. 1.Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations