Skip to main content

Simulation of Electromagnetic Wave Propagation on a Printed Circuit Board with Linear and Nonlinear Discrete Loads

  • Chapter
  • 96 Accesses

Abstract

This paper presents a method to co-simulate electromagnetic fields and electrical cire domain. On the one hand the approach is based on the time domain the Finite Integration Method — which is almost identical to the wellnite-Difference Time-Domain Method — for the simulation of electromag1 on the other hand it is based on the numerical integration of network formulated by means of the Modified Nodal Approach.

The essentials of the two basic methods are outlined. The interrelation between the magnetic fields on the one hand and currents and voltages on the other r with the dynamical coupling of the two methods is explained. An ation, based on the time domain solver of the Electromagnetic CAE package MAFIA and the circuit simulator SPICE, is described. Results of the co-simulation for some examples are presented and compared to that of other simulation methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANACAD Electrical Engineering Software, ELDO v4A.x User’s Manual, Document No.310101, Revision 4.0, February 1996.

    Google Scholar 

  2. Comlinear SPICE Macromodels by National Semiconductor, http://Avww.national.com/models/spke/CUclcspice.html, November 1996.

  3. C.-W. Ho, A. E Ruehli, and P. A. Brennan, „The Modified Nodal Approach to Network Analyis,“ IEEE Transactions on Circuits and Systems, Vol. 22, No. 6, June 1975: 504–509.

    Article  Google Scholar 

  4. B. Johnson, T. L. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli, SPICE3 Version 3f Users ‘s Manual, Department of Electrical Engeneerin and Computer Sciences, University of California Berkeley, 1993.

    Google Scholar 

  5. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, Boca Raton [u.a.], 1993.

    Google Scholar 

  6. The MAFIA Collaboration, MAFIA-The ECAD System, CST GmbH, Darmstadt, 1996.

    Google Scholar 

  7. L.W. Nagel, SPICE2: A Computer Program to Simulate Semicoductor Circuts, Ph. D. Thesis at the University of California Berkeley, Memorandum No. ERL-M520, May 1975.

    Google Scholar 

  8. T. Quarles, Analysis of Perfomance and Convergence lssues for Circuit Simulation, Ph. D. Thesis at the University of California Berkley, Memorandum No. UCB/ERL-M89/42, April 1989.

    Google Scholar 

  9. W. Sui, D. A. Christensen, and C. H. Durney, „Extending the Two-Dimensional FDTD Method to Hybrid Eletromagnetic Systems with Active and Passive Lumped Elements,“ IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 4, April 1992: 532–539.

    Article  Google Scholar 

  10. A. Taflove, Computational Electromagmetics: The Finite-Difference Time-Domain Method, Artech House, Norwood (Ma. ), 1995.

    MATH  Google Scholar 

  11. V. A. Thomas, M. E. Jones, M. Piket-May, A. Taflove, and E. Harrigan, „SPICE Lumped Circuits as Sub-Grid Models for FDTD Analysis,“ IEEE Microwave and Guided Wave Letters, Vol. 4, No. 5, May 1994.

    Google Scholar 

  12. J. Vlach and K. Singhal. Computer Methods for Circuit Analysis and Design, 2nd edittion, van Nostrand Reinhold, New York,1994.

    Google Scholar 

  13. T. Weiland, „Time Domain Electromanetic Field Compution with Finite Dofference Methods,“ International Journal of Numrical Modelling: Electronic Networks, Devices and Fields, Vol. 9, No. 4, July 1996.

    Google Scholar 

  14. M. Witting, T. Pröpper und T. Weiland, „Simulation parasitärer elekrromagnerischer Vorgänge auf Leiterplatten unter Einbeziehung elektronicher Bauelemente,“ EMV ‘86–5. Int. Fachmese und Kongreβ für Elektromagnetische Verträglichkeit, Karlsruhe, 20–22. Februar 1996.

    Google Scholar 

  15. M. Witting, Simulation elektrischer Netzwerke unter Berücksichtigung ihrer elektromagnerschen Umgebung, Darmstädter Disseration D17, Februar 1997.

    Google Scholar 

  16. K. S. Yee, „Numerical Solution of Initinal Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media, “ IEEE Trasactions on Antennas and Propagation, Vol. 14, No. 3, May 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Witting, M., Pröpper, T. (1998). Simulation of Electromagnetic Wave Propagation on a Printed Circuit Board with Linear and Nonlinear Discrete Loads. In: Grabinski, H., Nordholz, P. (eds) Signal Propagation on Interconnects. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6512-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6512-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5059-8

  • Online ISBN: 978-1-4757-6512-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics