Novel Magnetic Microcarriers on the Basis of Poly(Vinyl Alcohol) for Biomedical Analysis

  • Detlef Müller-Schulte
  • Frank Füssl
  • Marcel De Cuyper


Novel magnetic microspheres based on poly(vinyl alcohol) (PVA) were synthesized using a water-in-oil-suspension technique. The preparation method enables bead sizes from 1 to 1000 µm and represents a simple procedure requiring only a fraction of the time and effort usually necessary for the synthesis of magnetic beads. The unique hydrogel-like structure of PVA offers a high chemical functionality comparable to that of the well known agarose gels. The applicability of the new beads was demonstrated by two tests: (i) an immunoadsorption test to remove blood group antibodies from human plasma using blood group antigen coated beads and (ii) the binding of biotinylated albumin to differently coated avidin beads. The tests revealed a good binding performance for both carriers. The relationship between the binding capacity of the biotin probe and the avidin coupling mode is explained in more detail.


Magnetic Bead Vinyl Alcohol High Performance Liquid Chro Bead Size High Performance Liquid Chro 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guesdon JL and Avrameas S (1977). Magnetic solid phase enzyme-immunoassay. Immunochemistry 14, 443–447.CrossRefGoogle Scholar
  2. 2.
    Molday RS, Yen SPS and Rembaum A (1977). Application of magnetic microspheres in labelling and separation of cells. Nature 268, 437–438.Google Scholar
  3. 3.
    Margel S and Offarim M (1983). Novel effective immunoadsorbents based on agarose-polyaldehyde micro-sphere beads: synthesis and affinity chromatography. Analytical Biochemistry 128, 342–350.CrossRefGoogle Scholar
  4. 4.
    Margel S, Zisblatt S and Rembaum A (1979). Polyglutaraldehyde: a new reagent for coupling proteins to microspheres and for labeling cell surface receptors. Journal of Immunological Methods 28, 341–353.CrossRefGoogle Scholar
  5. 5.
    Margel S, Beitler U and Ofarim M (1982). Polyacrolein microspheres as a new tool in cell biology. Journal of Cell Science 56, 157–175.Google Scholar
  6. 6.
    Schröder UL and Mosbach K (1983). Magnetic particles for intravascular administration. International Patent Application W083 91738.Google Scholar
  7. 7.
    Mosbach K and Schröder U (1979). Preparation and application of magnetic polymers for targeting of drugs. FEBS Letters 102,112–116.Google Scholar
  8. 8.
    Ugelstad J, Ellingsen T, Berge A and Helgee OB (1987). Magnetic polymer particles and process for the preparation thereof. U.S. Patent 4,654,267.Google Scholar
  9. 9.
    Daniel JC, Schuppiser JL and Tricot M (1982). Latex of magnetic polymers. U.S. Patent 4,358,388.Google Scholar
  10. 10.
    Madry N (1993), Behring Werke, Marburg, Germany personal communication.Google Scholar
  11. 11.
    Müller-Schulte (1992). Verfahren zur Herstellung perlförmiger Polymerträger auf der Basis von PVAL. German Patent DE 3900945.Google Scholar
  12. 12.
    Müller-Schulte D. (1993). Perlförmige Polyvinylalkoholgele für die Aufreinigung and Auftrennung biologischer Flüssigkeiten, Verfahren zu ihrer Herstellung and Verwendung. German Patent Application DE 4127657.Google Scholar
  13. 13.
    Yapel AF (1985). Albumin microsphere: heat and chemical stabilization. In Methods in Enzymology. Widder KJ and Green R (Eds), Orlando, Academic Press, Vol. 112, 3–18.Google Scholar
  14. 14.
    Widder KJ, Morris RM, Poore G et al (1981). Tumor remission in Yoshida sarcoma-bearing rates by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc. Nat. Acad. Sci., 78, 579–581.Google Scholar
  15. 15.
    Longo WE and Goldberg EP (1985). Hydrophilic albumin microspheres. In Methods in Enzymology. Widder KJ and Green R (Eds), Orlando, Academic Press, Vol. 112, 18–26.Google Scholar
  16. 16.
    Tomlinson E and Burger JJ (1985). Incorporation of water-soluble drugs in albumin microspheres. In Methods in Enzymology. Widder KJ and Green R (Eds), Orlando, Academic Press, Vol. 112, 27–43.Google Scholar
  17. 17.
    Senyei AE, Driscoll CF and Widder KJ (1985). Biophysical drug targeting: magnetically responsive albumin microspheres. In Methods in Enzymology. Widder KJ and Green R (Eds), Orlando, Academic Press, Vol. 112, 56–67.Google Scholar
  18. 18.
    Burger JJ, Tomlinson E Mulder EMA and McVie JG (1983). Albumin microspheres for intro-arterial tumor targeting. I. Pharmaceutical aspects. International Journal of Pharmacy 23, 333–344.Google Scholar
  19. 19.
    Finch CA (1992). Health and toxicity regulations to polyvinyl alcohol. In Polyvinyl alcohol-developments. Finch CA (Ed), Chichester, John Wiley & Sons, 763–767.Google Scholar
  20. 20.
    Ficek BJ and Peppas NA (1993). Novel preparation ofpoly(vinyl alcohol) microparticles without crosslinking agent for controlled drug delivery of proteins. Journal of Controlled Release 27, 259–264.Google Scholar
  21. 21.
    Fujisato T, Okada T, Tabata Y and Ikada Y (1990). Entrapping of hepatocytes within PVA hydrogel tube. Polymer Preprints, Japan (Engl. Ed) 39, 1069–1075.Google Scholar
  22. 22.
    Kim C-J and Lee PI (1992). Composite poly(vinyl alcohol) beads for controlled drug delivery. Pharmaceutical Research 9, 10–16.CrossRefGoogle Scholar
  23. 23.
    Hyon S-H, Cha W-I, Ikada Yet al (1994). Polyvinyl alcohol) hydrogels as soft contact lens material. Journal of Biomaterial Science 5, 397–406.CrossRefGoogle Scholar
  24. 24.
    Burg K, Mauz O, Noetzel S and Sauber K (1988). Neue synthetische Träger zur Fixierung von Enzymen. Angewandte Makromolekulare Chemie 157, 105–121.CrossRefGoogle Scholar
  25. 25.
    Dixon DR (1980). Selective magnetic adsorbents. Journal Macromolecular Science-Chemistry A14 153–159.CrossRefGoogle Scholar
  26. 26.
    Chang HN (1982). Reverse osmosis separation of inorganic salts using poly(vinyl alcohol) membranes. Desalination 42 63–77.CrossRefGoogle Scholar
  27. 27.
    Chun H-J, Kim J-J, Lee S-H et al (1990). Dialysis performance of the modified poly(vinyl alcohol) membranes. Polymer Journal 22, 477–481.CrossRefGoogle Scholar
  28. 28.
    Huang RYM and Rhim JW (1993). Separation characteristics of pervaporation membrane separation process using modified poly(vinyl alcohol) membranes. Polymer International 30 123–128.CrossRefGoogle Scholar
  29. 29.
    Giusti P, Latteri L, Barbani N et al (1993). Hydrogels of poly(vinyl alcohol) and collagen as new bioartifidial materials. Journal of Materials Science in Medicine 4 538–542.CrossRefGoogle Scholar
  30. 30.
    Zhujun Z, Zhang Y, Wangbai M et al (1989). Poly(vinyl alcohol) as a substrate for indicator immobilization for fiber-optic chemical sensors. Analytical Chemistry 61 202–205.CrossRefGoogle Scholar
  31. 31.
    Müller-Schulte D (1996). Magnetic polymer particles on the basis of poly(vinyl alcohol) process for its preparation and application thereof. PCT/EP 96/02398 Patent Application.Google Scholar
  32. 32.
    Yanase N, Noguchi H, Asakura H and Suzata T (1993). Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofuid. Journal of Applied Polymer Science 50 765–776.CrossRefGoogle Scholar
  33. 33.
    Reimers GW and Khalafalla SE (1974). Production of magnetic fluids bypeptization techniques. U S Patent 3,843,540.Google Scholar
  34. 34.
    Shinkai M, Honda H and Kobayashi T (1991). Preparation offine magnetic particles and application for enzyme immobilization. Biocatalysis 5 61–69.CrossRefGoogle Scholar
  35. 35.
    Rosensweig RE (1975). Ferrofluid composition and process of making same. U.S. Patent 3,917,538.Google Scholar
  36. 36.
    Müller-Schulte D and Brunner H (1995). Novel magnetic microspheres on the basis of poly(vinyl alcohol) as affinity medium for quantitative detection ofglycated haemoglobin. Journal of Chromatography A 711 53–60.CrossRefGoogle Scholar
  37. 37.
    Mül ler-Schulte D. Novel hemoperfusion media for the removal of blood group antibodies. Presented at the Xth Int. Symposium on Hemoperfusion, Adsorption and Immobilized Reactants, Rome, Sept. 1990.Google Scholar
  38. 38.
    Ikada Y, Iwata H, Horii F et al (1981). Blood compatibility of hydrophilic polymers. Journal of Biomedical Materials Research 15, 697–718.CrossRefGoogle Scholar
  39. 39.
    Freiburghaus C, Ohlson S and Nilsson IM (1988). Extracorporeal systems for adsorption of antibodies in hemophilia A and B. In Methods in Enzymology. Mosbach K (Ed), San Diego, Academic Press, Vol. 137, 458–466.Google Scholar
  40. 40.
    Parker TS and JF Studebaker JF (1988). Low density lipoprotein-pheresis: selctive immunoadsorption of plasma lipoprotein from patients with premature atherosclerosis. In Methods in Enzymology. Mosbach K (Ed), San Diego, Academic Press, Vol. 137, 466–478.Google Scholar
  41. 41.
    Müller-Schulte D (1993). Synergistic-radiation grafting: a novel modification technique for the preparation of biomaterials. Radiation Physics and Chemistry 42 891–896.Google Scholar
  42. 42.
    Chang TMS (1988). Medical application of immobilized proteins enzymes and cells. In Methods in Enzymology. Mosbach K (Ed), San Diego, Academic Press, Vol. 137 444–457.Google Scholar
  43. 43.
    Müller-Schulte D and Daschek W (1995). Application of radiation grafted media for lectin affinity separation and urease immobilization: a novel approach to tumor therapy and renal disease diagnosis. Radiation Physics and Chemistry 46 1043–1047.ADSCrossRefGoogle Scholar
  44. 44.
    Dumitriu S and Dumitriu M (1994). Polymeric drug carriers. In Polymeric Biomaterials. Dumitriu S (Ed), New York, Marcel Dekker, 435–725.Google Scholar
  45. 45.
    Iannone A, Federico M, Tomasi A et al (1992). Detection and quantitation in rat tissue of the superparamagnetic magnetic resonance contrast agent dextrane magnetite as demonstrated by electron spin resonance spectroscopy. Invest. Radiol. 27 450–455. CrossRefGoogle Scholar
  46. 46.
    Weissleder R, Reimer P, Lee AS et al (1990). MR receptor imaging: ultrasmall iron oxide particles tar-getable to asialoglycoprotein receptors. AJR 155 1161–1167.CrossRefGoogle Scholar
  47. 47.
    Carreno MP, Labarre D, Kazatchkine M and Jozefowicz M (1986). Inhibition of complement activation by modifying reactive surfaces. In Biological and Biomechanical Performance of Biomaterials. Christel P, Meunier A and Lee AJC (Eds), Amsterdam, Elsevier Science Publishers, 299–303.Google Scholar
  48. 48.
    Müller-Schulte D, Manjini S and Vijayalaksmi MA (1991). Comparative affinity chromatography studies using novel grafted polyamide and polyvinyl alcohol) media. Journal of Chromatography 539 307–314.CrossRefGoogle Scholar
  49. 49.
    Miller DR and Peppas NA (1988). Diffusional effects during albumin adsorption on highly swollen poly(vinyl alcohol) hydrogels. European Polymer Journal 24 611–615.CrossRefGoogle Scholar
  50. 50.
    Ito Y, Sisido M and lmanishi Y (1990). Adsorption of plasma proteins and adhesion of platelets onto novel polyetherurethaneureas - relationship between denaturation of adsorbed proteins and platelet adhesion. Journal of Biomedical Materials Research 24 227–242.CrossRefGoogle Scholar
  51. 51.
    Steinberg J, Neumann AW, Absolom DR and Zingg W (1989). Human erythrocyte adhesion and spreading on protein-coated polymer surfaces. Journal of Biomedical Materials Research 23, 591–610.CrossRefGoogle Scholar
  52. 52.
    Llanos GR and Sefton MV (1993). Immobilization of poly(ethylene glycol) onto poly(vinyl alcohol) hydrogel: 2. Evaluation of thrombogenicity. Journal of Biomedical Materials Research 27 1383–1391.CrossRefGoogle Scholar
  53. 53.
    O’Brien JR (1990). Shear-induced platelet aggregation. The Lancet 335 711–713.CrossRefGoogle Scholar
  54. 54.
    Ratner BD, Johnston AB and Lenk TJ (1987). Biomaterial surface. Journal of Biomedical Materials Research 21, 59–90.CrossRefGoogle Scholar
  55. 55.
    Garcia C, Anderson JM and Barenberg SA (1980). Hemocompatibility: Effect of structured water. Transaction American Society Artificial Organs 26 294–298.Google Scholar
  56. 56.
    Bradford MM (1976). Rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein dye binding. Analytical Biochemistry 72 248–254.CrossRefGoogle Scholar
  57. 57.
    Müller-Schulte D, Füssl F, Bales U and Schnitzler N (1996). Immunomagnetic separation and detection using novel magnetic microcarriers based on poly(vinyl alcohol). Presented at the 16th Int. Symposium on the Separation and Analysis of Proteins, Peptides and Polynucleotides. Luxembourg.Google Scholar
  58. 58.
    Margel S and Marcus L (1986). Specific hemoperfusion through agarose acrobeads. Applied Biochemistry and Biotechnology 12 37–66.CrossRefGoogle Scholar
  59. 59.
    Osterwalder B, Gratewohl A, Nissen C and Speck B (1986). Immunoadsorption for removal of anti-A and anti-B blood group antibodies in ABO-incompatible bone marrow transplantation. Blut 53 379–390.CrossRefGoogle Scholar
  60. 60.
    Bensinger WI, Baker DA, Buckner CD et al (1981). In vitro and in vivo removal of anti-A erythrocyte anti body by adsorption to a synthetic immunoadsorbent. Transfusion 21 335–342.CrossRefGoogle Scholar
  61. 61.
    Käbisch A, Kroll H, Wedi B et al (1994). Severe adverse effects of protein A immunoadsorption. The Lancet 343 116.CrossRefGoogle Scholar
  62. 62.
    Hultman T, Stähl S, Homes E and Uhlen M (1989). Direct solid phase sequencing ofgenomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Research 17 4937–4946.CrossRefGoogle Scholar
  63. 63.
    Olsvik O, Popovic T, Skjerve et al (1994). Magnetic separation techniques in diagnostic microbiology. Clinical Microbiology Reviews 7 43–54.Google Scholar
  64. 64.
    Haukanes B-I and Kvam C (1993). Application of magnetic beads in bioassay. Bio/Technology 11, 60–63.CrossRefGoogle Scholar
  65. 65.
    Wattiez D (1972). Verfahren zum Aufpfropfen einer polymerisierbaren Verbindung auf ein Grundpolymeres. German Patent 21 57 902.Google Scholar
  66. 66.
    Nakajima N and Ikada Y (1995). Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjugate Chemistry 6 123–130.CrossRefGoogle Scholar
  67. 67.
    Ngo TT (1988). Procedure for activating polymers with primary and/or secondary hydroxyl groups. Makromolekulare Chemie Macromolecular Symposia 17, 229–239.CrossRefGoogle Scholar
  68. 68.
    Sundberg L and Porath J (1974). Preparation of adsorbents for biospecific affinity chromatography. Journal of Chromatography 90 87–98CrossRefGoogle Scholar
  69. 69.
    Valentova O, Marek M, Svec F et al (1981). Comparison of different methods of glucose oxidase immobilization. Biotechnology and Bioengineering 23 2093–2104.CrossRefGoogle Scholar
  70. 70.
    Frost RG, Monthony JF, Engelhorn SC and Siebert CJ (1981). Covalent immobilization of proteins to N-hydroxysuccinimide ester derivatives of agarose. Biochimica et Biophysica Acta 670 163–169.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Detlef Müller-Schulte
    • 1
  • Frank Füssl
    • 1
  • Marcel De Cuyper
    • 2
  1. 1.RWTH AachenInstitut für Anorganische ChemieAachenGermany
  2. 2.Campus KortrijkKatholieke Universiteit LeuvenKortrijkBelgium

Personalised recommendations