Magnetic Fluid Hyperthermia (MFH)

  • A. Jordan
  • P. Wust
  • R. Scholz
  • H. Faehling
  • J. Krause
  • R. Felix


A short review is given on current conventional hyperthermia technology. As an alternative, heat can also be generated by a magnetic fluid, which is excited by an externally applied AC magnetic field. In contrast to regional Radiofrequency (RF-) systems, Magnetic Fluid Hyperthermia (MFH) is not limited by electric (E-)field boundary effects and heterogeneous tissue conductivity. MFH may become interesting especially for tumors which currently cannot, or only with highly invasive procedures, be treated with hyperthermia, e.g. bone tumors, intrathoracal tumors, tumors of the base of the scull and of the brain. Current physical and biological results of MFH with carcinoma cells in vitro and experimental tumors in vivo are presented. Deeper insights into the mechanism of magnetic fluid power absorption, the use of Magnetic Resonance Imaging (MRI) for treatment planning, advancements of AC magnetic field applicator technology, intracellular hyperthermia, and options for magnetic fluid conjugates with isotopes and drugs are tasks for future research.


Magnetic Fluid Power Absorption Specific Absorption Rate Ferrite Particle WiDr Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Overgaard J (1985). History and heritage–an introduction. In Hyperthermie Oncology, Vol. 2. Overgaard J (Ed), London, Taylor and Francis, 8–9.Google Scholar
  2. 2.
    Streffer C, van Beuningen D (1987). The biological basis for tumor therapy by hyperthermia and radiation. In Hyperthermia and the Therapy of Malignant Tumors. Streffer J (Ed), Berlin, Springer, 24–70.Google Scholar
  3. 3.
    Burgman P, Nussenzweig A, Li GC (1995). Thermotolerance. In Thermoradiotherapy and Thermo-chemotherapy. Vol. 1: Biology, Physiology, Physics. Seegenschmiedt MH, Fessenden P, Vernon CC (Eds), Berlin, Springer, 75–87.Google Scholar
  4. 4.
    Fairbairn, JJ, Khan MW, Ward KJ, Loveridge BW, Fairbairn DW, O’Neill KL (1995). Induction of apoptotic cell DNA fragmentation in human cells after treatment with hyperthermia. Cancer Letters 89, 183–188.Google Scholar
  5. 5.
    Harmon BV, Takano YS, Winterford CM, Gobé GC (1991). The role of apoptosis in the response of cells and tumors to mild hyperthermia. International Journal of Radiation Biology, 59, 489–501.CrossRefGoogle Scholar
  6. 6.
    Takano YS, Harmon, BV, Kerr JFR (1991). Apoptosis induced by mild hyperthermia in human and murine tumor cell lines: a study using electron microscopy and DNA gel electrophoresis. Journal of Pathology 163, 329–336.CrossRefGoogle Scholar
  7. 7.
    Sellins KS, Cohen JJ (1991). Hyperthermia induced apoptosis in thymocytes. Radiation Research 126, 88–95.CrossRefGoogle Scholar
  8. 8.
    Konings AWT (1995). Interaction of heat and radiation in vitro and in vivo. In Thermoradiotherapy and Thermochemotherapy. Vol. 1: Biology, Physiology, Physics. Seegenschmiedt MH, Fessenden P, Vernon CC (Eds), Berlin, Springer, 89–102.Google Scholar
  9. 9.
    Song CW, Choi IB, Nah BS, Sahu SK, Osborn JL (1995). Microvasculature and perfusion in normal tissues and tumors. In Thermoradiotherapy and Thermochemotherapy. Vol. 1: Biology, Physiology, Physics. Seegenschmiedt MH, Fessenden P, Vernon CC (Eds), Berlin, Springer, 139–156.Google Scholar
  10. 10.
    Multhoff G, Botzler C, Wiesnet M, Müller E, Meier T, Wilmanns W, Issels RD (1995). A stress inducible 72-kDa heat shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. International Journal of Cancer 61, 272–279.CrossRefGoogle Scholar
  11. 11.
    Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, van der Zee J, van Putten WLJ, van Rhoon GC, van Dijk JDP, Gonzalez D, Goodman P, Sherar M (1996). Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Journal of Radiation Oncology Biology and Physics 35, 731–744.CrossRefGoogle Scholar
  12. 12.
    Overgaard J, Gonzalez Gonzalez D, Hulshof MCCH, Arcangeli G, Dahl O, Melia O, Bentzen SM (1996). Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. International Journal of Hyperthermia 12, 3–20.CrossRefGoogle Scholar
  13. 13.
    Sneed PK, Stauffer PR, Diederich CJ, McDermott MW, Lamborn KR, Weaver KA, Prados MD, Chang S, Malec MK, Spry L, Lamb SA, Voss B, Wara WM, Larson DA, Phillips TL, Gutin PH (1996). Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. International Journal of Radiation Oncology Biology Physics 36 1, Suppl., Proceedings of the American Society for Therapeutic Radiology and Oncology 38th Meeting, 159.Google Scholar
  14. 14.
    Valdagni R, Amichetti, M (1993). Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymphnodes in stage IV head and neck patients. International Journal of Radiation Oncology Biology and Physics 28, 163–169.Google Scholar
  15. 15.
    Van der Zee J (1996). Phase Ill trial results from additional hyperthermia in inoperable urinary bladder, uterine cervical and rectal cancer. Personal communication.Google Scholar
  16. 16.
    Wust P, Seebass, Nadobny J, Felix R (1995) Electromagnetic deep heating technology. In Medical Radiology, Principles and Practice of Thermoradiotherapy and Thermochemotherapy. Seegenschmiedt, MH, Fes-senden, P, Vernon, C C (Eds), Berlin, Springer, 219–251.Google Scholar
  17. 17.
    Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parott JC and Taylor CB (1957). Selective inductive heating of lymph nodes. Annals of Surgery 146, 596–606.CrossRefGoogle Scholar
  18. 18.
    Medal BS, Shorey W, Gilchrist RK, Barker W, Hanselman R (1959). Controlled radio frequency generator for production of localized heat in intact animal. A. M. A. Archives of Surgery 79, 427–431.CrossRefGoogle Scholar
  19. 19.
    Gilchrist RK, Shorey WD, Hanselman RC, Depeyster FA, Yang J, Medal R (1965). Effects of electromagnetic heating on internal viscera: a preliminary to the treatment of human tumors. Annals of Surgery 161, 890–896.CrossRefGoogle Scholar
  20. 20.
    Gordon RT, Hines JR, Gordon D (1979). Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Medical Hypothesis 5, 83–102.CrossRefGoogle Scholar
  21. 21.
    Rand RW, Snow HD, Brown WJ (1982). Thermomagnetic surgery for cancer. Journal of Surgical Research 33, 177–183.CrossRefGoogle Scholar
  22. 22.
    Luderer A, Borrelli NF, Panzarino JN, Mansfield GR, Hess DM, Brown JL, Barnett EH (1983). Glas-ceramic-mediated, magnetic field induced localized hyperthermia: response of a murine mammary carcinoma. Radiation Research 94, 190–198.CrossRefGoogle Scholar
  23. 23.
    Lerch IA, Pizzarello DJ (1989). Radiofrequency induction of intravenously injected ferromagnetic particles: effect on mammary tumors of rats. Personal communication.Google Scholar
  24. 24.
    Lerch IA (1987). The biology, physics, and engineering of intracellular particle-induction hyperthermia. Radiation Research, Proceedings of the 8th International Congress of Radiation Research, Edinburgh, 325.Google Scholar
  25. 25.
    Lerch IA, Pizzarrello DJ (1986). The physics and biology of tumor-specific particle-induction hyperthermia. Medical Physics 13, 786.Google Scholar
  26. 26.
    Mitsumori M, Hiraoka M, Shibata T, Okuno Y, Masunaga S, Koishi M, Okajima K, Nagata Y, Nishimura Y, Abe M, Ohura K, Hasegawa M, Nagae H, Ebisawa Y (1994). Development of intro-arterial hyperthermia using a dextran-magnetite complex. International Journal of Hyperthermia 10, 785–793.CrossRefGoogle Scholar
  27. 27.
    Masuko Y, Tazawa K, Viroonchatapan E, Takemori S, Shimizu T, Fujimaki M, Nagae H, Sato H, Horikoshi I (1995). Possibility of thermosensitive magnetoliposomes as a new agent for electromagnetic induced hyperthermia. Biological and Pharmacological Bulletin 18, 1802–1804.CrossRefGoogle Scholar
  28. 28.
    Jordan A, Wust P, Fähling H, John W, Hinz A, Felix, R (1993). Inductive heating offerrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. International Journal of Hyperthermia 9, 51–68.CrossRefGoogle Scholar
  29. 29.
    Burton CV, Mosley JM, Walker AE, Braitman HE (1966). Induction thermocoagulation of the brain: a new neurosurgical tool. IEEE Transactions on Biomedical Engineering 13, 114–120.Google Scholar
  30. 30.
    Burton CV, Hill M, Walker AE (1971). The RF thermoseed–a thermally self-regulating implant for the production of brain lesions. IEEE Transactions on Biomedical Engineering 18, 104–109.Google Scholar
  31. 31.
    Brezovich IA (1987). Ferromagnetics. In Syllabus: A Categorial Course in Radiation Therapy. Steeves, RA, Palival, BR (Eds), presented at the 73rd Scientific Assembly and Annual Meeting of the Radiological Society of North America, Nov 29-Dec 4,117–126.Google Scholar
  32. 32.
    Brezovich IA (1988). Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. In Biological, physical and clinical aspects of hyperthermia. Medical Physics Monograph 16, 82–111.Google Scholar
  33. 33.
    Brezovich IA, Atkinson WJ, Chakraborty DP (1984a). Temperature Distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Medical Physics 11, 145–152.CrossRefGoogle Scholar
  34. 34.
    Brezovich IA, Atkinson WJ, Lilly MB (1984b). Local hyperthermia with interstial techniques. Cancer Research (Suppl.) 44, 4752s - 4756s.Google Scholar
  35. 35.
    Stauffer PR, Diederich CJ, Seegenschmiedt MH (1995). Interstitial heating technologies. In Thermoradiotherapy and Thermochemotherapy. Vol. 1: Biology, Physiology, Physics. Seegenschmiedt MH, Fessenden P, Vernon CC (Eds), Berlin, Springer, 279–320.Google Scholar
  36. 36.
    Oleson JR (1982). Hyperthermia by magnetic induction. I. Physical characteristics of the technique. International Journal of Radiation Oncology Biology and Physics 8 1747–1756.CrossRefGoogle Scholar
  37. 37.
    Kato H, Furukawa M, Uchida, N, Kasai T, Fujita Y, Koda F, Kuroda H, Ishida T(1990). Development ofinductive heating equipment using inductive aperture-type applicator. International Journal of Hyperthermia 6, 155–168.CrossRefGoogle Scholar
  38. 38.
    Shliomis MI, Pshenichnikov AF, Morozov KT, Surubor IY (1990). Magnetic properties offerrocolloids. Journal of Magnetism and Magnetic Materials 85, 40–46.CrossRefGoogle Scholar
  39. 39.
    Hanson M (1991). The frequency dependence of the complex suceptibility of magnetic liquids. Journal of Magnetism and Magnetic Materials 96 105–113.CrossRefADSGoogle Scholar
  40. 40.
    Chan DCF, Kirpotin DB, Bunn PA (1993). Synthesis and evaluation of colloidal magnetic iron oxides fin-the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials 122, 374–378.CrossRefADSGoogle Scholar
  41. 41.
    Molday RS, Mackenzie D (1982). Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of Immunological Methods 52, 353–367.CrossRefGoogle Scholar
  42. 42.
    Jordan A, Wust P, Scholz R, Tesche B, Fähling H, Mitrovics T, Vogl T, Cervós-Navarro J, Felix R (1996). Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. International Journal of Hyperthermia 12, 705–722.CrossRefGoogle Scholar
  43. 43.
    Watson JK (1980). Applications of magnetism. New York, John Wiley & Sons, 6–7.Google Scholar
  44. 44.
    Smit J, Wijn HPJ (1962). Ferrite. Die physikalischen Eigenschaften von ferrimagnetischen Oxyden unter besonderer Berücksichtigung ihrer technischen Anwendung. Philips Technische Bibliothek, 305–320.Google Scholar
  45. 45.
    Popplewell J, Rosensweig RE, Johnston RJ (1990). Magnetic field induced rotations in ferrofluids. IEEE Transactions on Magnetics 26, 1852–1854.CrossRefGoogle Scholar
  46. 46.
    Chou CK (1990). Use of heating rate and specific absorption rate in the hyperthermia clinic. International Journal of Hyperthermia 6 367–370.CrossRefGoogle Scholar
  47. 47.
    Roemer RB (1990). Thermal dosimetry. In Thermal dosimetry and treatment planning. Gautherie M (Ed), Berlin Heidelberg New York, Springer, 119–214.Google Scholar
  48. 48.
    Geshev J, Popov O, Masheva V, Mikhov M (1990). Thermomagnetic curves for a disordered system of single-domain ferromagnetic particles with cubic anisotropy. Journal of Magnetism and Magnetic Materials 92, 185–190.CrossRefADSGoogle Scholar
  49. 49.
    Fannin PC, Charles SW (1991). Measurement of the Nell relaxation of magnetic particles in the frequency range 1 kHz to 160 MHz. Journal of Physics D: Applied Physics 24, 76–77.CrossRefADSGoogle Scholar
  50. 50.
    Wust P, Stahl H, Löffel J, Seebass M, Riess H, Felix R (1995). Clinical physiological and anatomical determinants for radiofrequency hyperthermia. International Journal of Hyperthermia 11, 151–167.CrossRefGoogle Scholar
  51. 51.
    Muir AR, Golberg L (1961). Observations on subcutaneous macrophages. Phagocytosis of iron-dextran and ferritin sysnthesis. Quaterly Journal of Experimental Physiology 66, 289–298.Google Scholar
  52. 52.
    Valberg PA, Butler JP (1987). Magnetic particle motions within living cells. Physical theory and techniques. Biophysical Journal 52, 537–550.CrossRefADSGoogle Scholar
  53. 53.
    Kirschvink JL, Kobayashi-Kirschvink A, Woodford WI (1992). Magnetite biomineralization in the human brain. Proceedings of the National Academy of Sciences U.S.A. 89, 7683–7687.CrossRefADSGoogle Scholar
  54. 54.
    Cohen D (1973). Ferromagnetic contamination in the lungs and other organs of the human body. Science 180 745–748.CrossRefADSGoogle Scholar
  55. 55.
    Hamm B, Vogl TJ, Branding G (1992). Focal liver lesions: MR imaging with MN-DODP: Intial clinical results in 40 patients. Radiology 182, 167–174.Google Scholar
  56. 56.
    Wagner S, Pfefferer D, Taupitz M, Kresse M, Lawaczeck R Hamm B, Wolf HJ (1992). Intravenous MRlymphography with ultrasmall iron oxide particles: In vivo and ex vivo examinations in rats. Proceedings of Society of Magnetic Resonance in Medicine 1992, Book of Abstracts, 570.Google Scholar
  57. 57.
    Kawamori Y, Matsui IO, Kadoya M, Yoshikawa J, Demachi H, Takashima T (1992). Differentiation of hepatocellular carcinomas from hyperplastic nodules induced in rat liver with ferrite-enhanced MR imaging. Radiology 183, 65–72.Google Scholar
  58. 58.
    Pouliquen D, Lucet I, Chouly C, Perdrisot R, LeJeune JJ, Jallet P (1993). Liver-directedsuperparamagnetic iron oxide: quantitation of T2 relaxation effects. Magnetic Resonance Imaging 11, 219–228.CrossRefGoogle Scholar
  59. 59.
    Saini S, Stark DD, Hahn PF, Wittenberg J, Brady TJ, Ferucci JT (1987). Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 162, 211–216.Google Scholar
  60. 60.
    Yeh T, Zhang W, Ildstat ST, Ho C (1993). Intracellular labeling of T-cells with superparamagnetic contrast agents. Magnetic Resonance in Medicine 30, 617–625.CrossRefGoogle Scholar
  61. 61.
    Bacon BR, Stark DD, Park CH, Saini S, Groman EV, Hahn, PF, Compton CC, Ferrucci JT (1987). Ferrite particles: A new magnetic resonance imaging contrast agent. Lack of acute or chronic hepatoxicity after intravenous administration. The Journal of Laboratory and Clinical Medicine 110, 164–171.Google Scholar
  62. 62.
    Rummeny E, Weissleder R, Stark DD, Elizondo G, Ferrucci JT (1988). Kernspintomographie fokaler Leber-and Milzläsionen. Radiologe 28, 380–386.Google Scholar
  63. 63.
    Marchal G, Van Hecke P, Demaerel P, Decrop E, Kennis C, Baert AL, Van Der Schueren E (1988). Detection of liver metastases with superparamagnetic iron oxide in 15 patients: results of MR imaging at 1.5 T. American Journal of Radiology 152, 771–775.Google Scholar
  64. 64.
    Renshaw PF, Owen CS, Evans AE, Leigh JS (1986). Immunospecific NMR contrast agents. Magnetic Resonance Imaging 4, 351–357.CrossRefGoogle Scholar
  65. 65.
    Magin RL, Bacic G, Niesman MR, Alameda JC, Wright SM, Swartz HM (1991). Dextran magnetite as a liver contrast agent. Magnetic Resonance in Medicine 20, 1–16.CrossRefGoogle Scholar
  66. 66.
    Hahn PF, Stark DD, Saini S, Lewis JM, Wittenberg J, Ferrucci JT (1987). Ferrite particles for bowel contrast in MR imaging: design issues and feasibility studies. Radiology 164, 37–41.Google Scholar
  67. 67.
    Hamm B, Reichel M, Vogl T, Taupitz M, Wolf KJ (1994). Superparamagnetic iron particles. The clinical results in the MR diagnosis of liver metastases. Fortschritte auf dem Gebiete der Röntgenstrahlen and der Nuklearmedizin 160, 52–58.CrossRefGoogle Scholar
  68. 68.
    Bulte JWM, De Jonge MWA, Kamman RL, Go KG, Zuiderveen F, Blaauw B, Oosterbaan JA, The TH, De Leij L (1992). Dextran-magnetite particles: contrast-enhanced MRI of blood-brain barrier disruption in a rat model. Magnetic Resonance in Medicine 23, 215–223.CrossRefGoogle Scholar
  69. 69.
    Barry JW, Bookstein JJ, Alksne JF (1981). Ferromagnetic embolization. Experimental evaluation. Radiology 138, 341–349.Google Scholar
  70. 70.
    Morimoto Y, Ashi KS, Okumura M, Kato Y (1980). Biomedical applications of magnetic fluids. I. Magnetic guidance offerro-colloid-entrapped albumin microsphere for site specific drug delivery in vivo. Journal of Pharmacodynamics 3, 264–267.CrossRefGoogle Scholar
  71. 71.
    Morimoto Y, Okumura M, Sugibayashi K, Kato Y (1981). Biomedical applications of magnetic fluids. II. Preparation and magnetic guidance of magnetic albumin microsphere for site specific drug delivery in vivo. Journal of Pharmacodynamics 4, 624–631.CrossRefGoogle Scholar
  72. 72.
    Widder KJ, Senyei AE, Ranney DF (1982). Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumour agents. Advances in Pharmacology and Chemotherapy 16, 213–271.CrossRefGoogle Scholar
  73. 73.
    Magdon E, Winterfeld G (1979). Untersuchungen zum Wachstumsverhalten spontaner Mamma-Karzinome bei C3H-Inzuchtmäusen. Archive der Geschwulstforschung 45, 782–794.Google Scholar
  74. 74.
    Mitrovics T, Sampaolo S, Jordan A, Wust P, Cervós-Navarro J, Felix R (1994). Effect of magnetic fluid hyperthermia on neoplastic tissue: a histopathologic study. Clinical Neuropathology 13, 258.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • A. Jordan
  • P. Wust
    • 1
  • R. Scholz
    • 1
  • H. Faehling
    • 1
  • J. Krause
    • 1
  • R. Felix
    • 1
  1. 1.Department of Radiation Oncology (WE07)Virchow University ClinicBerlinGermany

Personalised recommendations