Spio-Enhanced MR Lymphography

  • Mayk Kresse
  • Susanne Wagner
  • Matthias Taupitz


In patients with neoplastic disease, a possible metastatic spread in the regional and distant lymph nodes determines both the therapeutic concepts and prognosis.


Lymph Node Contrast Agent Superparamagnetic Iron Oxide Iron Oxide Particle Iliac Lymph Node 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Cancer Society (1994). Cancer facts and figures. Atlanta, Ga. American Cancer Society, 1–24.Google Scholar
  2. 2.
    UICC (1987). TNM classification of malignant tumors. Hermanek P, Sobin LH (Eds), Berlin-HeidelbergNew York-London-Paris-Tokyo, Springer.Google Scholar
  3. 3.
    Hermanek P, Giedi J, Dworak O (1989). Two programmes for examination of regional nodes in colorectal carcinoma with regard to the new pN classification. Path Res Pract 185, 867–873.CrossRefGoogle Scholar
  4. 4.
    Dooms GH, Hicak H, Crooks LE, Higgins CB (1984). Magnetic resonance imaging of the lymph nodes. Radiology 153, 719–729.Google Scholar
  5. 5.
    Dooms GH, Hricak H, Moseley ME, Bottles K, Fisher M, Higgins CB (1985). Characterization of lymphadenopathy by magnetic resonance relaxation times: preliminary results. Radiology 155, 691–697.Google Scholar
  6. 6.
    McLoud TC, Bourgouin PM, Greenberg RW et al (1992). Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling. Radiology 182, 319–323.Google Scholar
  7. 7.
    Henze E, Schelbert HR, Collins JD et al (1982). Lymphoscintigraphy with Tc-99m labelled dextran. J Nucl Med 23, 923–928.Google Scholar
  8. 8.
    Ege GN (1980). Radiocolloid lymphoscintigraphy. In Atlas of Lymphography. Viamonte M, Rüttimann M (Eds), Stuttgart-New York, Georg Thieme Verlag, 417–428.Google Scholar
  9. 9.
    Hamm B, Taupitz M, Hussmann P et al (1992). MR lymphography using iron oxide particles: dose response studies and pulse sequence optimization in rabbits. Am J Roentgenol 158, 183–190.Google Scholar
  10. 10.
    Taupitz M, Wagner S, Hamm B et al (1993). MR lymphography using iron oxide particles: detection of lymph node metastases in the VX2 rabbit tumor model. Acta Radiol 34, 10–15.Google Scholar
  11. 11.
    Weissleder R, Elizondo G, Josephson L et al (1989). Experimental lymph node metastases: enhanced detection with MR lymphography. Radiology 171, 835–839.Google Scholar
  12. 12.
    Taupitz M, Wagner S, Hamm B et al (1993). Interstitial MR lymphography with iron oxide particles. Results in tumor free and VX2 tumor bearing rabbits. Am J Roentgenol 161, 193–200.CrossRefGoogle Scholar
  13. 13.
    Garlick DG, Renkin EM (1970). Transport of large molecules from plasma to interstitial fluid and lymph in dogs. Am J Physiol 219, 1595–1605.Google Scholar
  14. 14.
    Anzai Y, McLachlan S, Moris M et al (1994). Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology 192, 709–715.Google Scholar
  15. 15.
    Weissleder R, Elizondo G, Wittenberg J et al (1990). Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175 494.-498.Google Scholar
  16. 16.
    Wagner S, Pfefferer D, Ebert W et al (1995). Intravenous MR lymphography with superparamagnetic iron oxide particles: experimental studies in rats and rabbits. Eur Radiol 5, 640–646.CrossRefGoogle Scholar
  17. 17.
    Jennings MA, Marchesi VT, Florey H (1962). The transport of particles across the wall of small blood vessels. Proc Roy Soc 156, 14–19.Google Scholar
  18. 18.
    Moore RD, Mumaw VR, Schoenberg MD (1960). The transport and distribution of colloidal iron and its relation to the ultrastructure of the cell. J Ultrastructure Res 5, 244–256.CrossRefGoogle Scholar
  19. 19.
    Ogisho Y, Matsuoka 0 (1983). Time dependent changes of microscopic localization of intravenously administered colloidal carbon particles in mouse lymph nodes. J Toxicol Sci 8, 291–300.Google Scholar
  20. 20.
    Stark DD (1991). Physiological principles for the design of hepatic contrast agents,Magn Reson Med 22 324.-328.CrossRefGoogle Scholar
  21. 21.
    Bean CP, Livingston JD (1959). Superparamagnetism. J Applied Physics 30, 120–129.Google Scholar
  22. 22.
    Weinmann HJ, Brasch RC, Press WR et al (1984). Characteristics of Gadolinium-DTPA complex: a potential NMR contrast agent. AJR 142, 619–624.CrossRefGoogle Scholar
  23. 23.
    Schuhmann-Giampieri G, Schmitt-Willich H, Frenzel T et al (1991). In vivo and in vitro evaluation of GdDTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest Radio] 26, 969–974.Google Scholar
  24. 24.
    Harika L, Weissleder R, Kirtland P et al (1995). MR lymphography with a lymphotropic TI-type MR contrast agent: Gd-DTPA-PGM. Magn Reson Med 33, 88–92.CrossRefGoogle Scholar
  25. 25.
    Fritz T, Unger E, Wilson-Sanders S et al (1991). Detailed toxicity studies of liposomal gadolinium-DTPA. Invest Radiol 26, 960–968.Google Scholar
  26. 26.
    Lüning M, Wiljasalo W, Weissleder H (1983). Lymphographie bei malignen Tumoren. Stuttgart, Thieme.Google Scholar
  27. 27.
    Kinmonth JB, Taylor GW, Kemp-Harper R (1955). Lymphangiography: a technique for its clinical use in the lower limb. Br Med J 1, 940–942.CrossRefGoogle Scholar
  28. 28.
    Lydyard P, Grossi C (1991). Das lymphatische System. In Kurzes Lehrbuch der Immunologie. Roitt IM, Brostoff J, Male DK (Eds), Stuttgart-New York, Georg Thieme Verlag, 35.Google Scholar
  29. 29.
    Casley-Smith JR (1965). Endothelial Permeability II. The passage of particles through the lymphatic endothelium of normal and injured ears. Br J Exp Pathol 46 34–49.Google Scholar
  30. 30.
    Cox PH (1981). The kinetics of macromolecule transport in lymph and colloid accumulation in lymph nodes. In Progress in Radiopharmacology 2. Cox PH (Ed), Elsevier, North-Holland Biomedical Press 2, 267–292.Google Scholar
  31. 31.
    Trubetskoy VS, Cannilo JA, Milshtein A et al (1995). Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magn Reson [mag 13, 31–37.CrossRefGoogle Scholar
  32. 32.
    Bergquist L, Strand SE, Persson BRR (1983). Particle sizing and biokinetics of interstitial lymphoscinti-graphic agents. Sem Nuc] Med 13, 9–19.CrossRefGoogle Scholar
  33. 33.
    Pfefferer D, Wagner S, Taupitz M et al (1993). Intravenous MR-lymphography with ultrasmall iron oxide particles: dose and time response to evaluate the interlymphonodal distribution. Proc Soc Magn Reson Med, 768.Google Scholar
  34. 34.
    Waynforth HB (1988). Experimental and surgical technique in the rat. London-San Diego, Academic Press, 156.Google Scholar
  35. 35.
    Shen T, Weissleder R, Papisov M et al (1993). Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29, 599–604.CrossRefGoogle Scholar
  36. 36.
    Pfefferer D, Wagner S, Kresse M et al (1995). Iron oxide enhanced MR lymphography in dogs. Proc Soc Magn Reson Med, 1120.Google Scholar
  37. 37.
    Olszewski W, Engeset A, Jaeger PM et al (1977). Flow and composition of leg lymph in normal men during venous stasis, muscular activity and local hyperthermia. Acta Physiol Scand 99, 149–155.CrossRefGoogle Scholar
  38. 38.
    Olszewski WL, Engeset A, Sokolowski J (1977). Lymph/low and protein in the normal male leg during lying, getting up, and walking. Lymphology 10, 178–183.Google Scholar
  39. 39.
    Elste V, Wagner S, Taupitz M et al (1996). Magnetic resonance lymphography in rats: effects of muscular activity and hyperthermia on the lymph node uptake of intravenously injected superparamagnetic iron oxide particles. Acad Radiology 3, 660–666.CrossRefGoogle Scholar
  40. 40.
    Wagner S, Kresse M, Pfefferer D et al (1996). Intravenöse MR-Lymphographie mit superparamagnetischen Eisenoxid-Partikeln: Einfluß vasoaktiver Pharmaka auf die lymphonodale Kontrastmittelanreicherung. Fortschr Röntgenstr 165, 321 322.Google Scholar
  41. 41.
    Bogdanov A, Papisov M, Weissleder R et al (1992). Opsonization of dextran-stabilized iron oxides with plasma proteins. Proc Soc Magn Reson Med, 864.Google Scholar
  42. 42.
    Thode K, Lück M, Schröder Wet al (1996). The influence of the sample preparation on plasma protein adsorption patterns on polysaccharide-stabilized iron oxide particles and N-terminal microsequencing of unknown proteins. J. Drug Targeting (submitted).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Mayk Kresse
    • 1
  • Susanne Wagner
    • 2
  • Matthias Taupitz
    • 3
  1. 1.Institut für Diagnostikforschung GmbHBerlinGermany
  2. 2.Abteilung für Radiologische Diagnostik und Nuklearmedizin Radiologische Klinik und Poliklinik Klinikum Benjamin FranklinFreie Universität BerlinBerlinGermany
  3. 3.Institut für RöntgendiagnostikCharité Medizinische Fakultät der Humboldt Universität zu BerlinBerlinGermany

Personalised recommendations