Magnetic Nanoparticles as Contrast Agents for MR Imaging

An Overview
  • Jeff W. M. Bulte
  • Rodney A. Brooks


Following a brief introduction to the basic concepts of relaxation and contrast enhancement in magnetic resonance imaging (MRI), this chapter presents an overview of the use of magnetic nanoparticles as contrast agents for MRI. It covers the basic principles of preparation and characterization, including variable-field relaxometry. It is shown how a detailed understanding of Ti and T2 relaxation by magnetic nanoparticles may aid further magnetopharmaceutical development. While this overview is far from complete because of the rapid recent developments in the field, an attempt is made to give an overview of current applications and future directions of magnetic nanoparticles as MR contrast agent.


Iron Oxide Contrast Agent Magnetic Nanoparticles Magn Reson Image Experimental Allergic Encephalomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koenig SH (1996). Molecular basis of magnetic relaxation of water protons in tissue. Acad Radiol 3, 597–606.CrossRefGoogle Scholar
  2. 2.
    Stark DD (1991). Hepatic iron overload: paramagnetic pathology. Radiology 179, 333–335.Google Scholar
  3. 3.
    Wolf GL, Burnett KR, Goldstein EJ, Joseph PM (1985). Contrast agents for magnetic resonance imaging. In: Magnetic Resonance Annual. Kressel H (Ed), New York, Raven Press, 231–266.Google Scholar
  4. 4.
    Ohgushi M, Nagayama K, Wada A (1978). Dextran magnetite: a new relaxation agent and its application to T2 measurements in gel systems. J of Magn Reson 29, 599–601.ADSGoogle Scholar
  5. 5.
    Kiyama M (1974). Conditions for the formation of Fe04 by the air oxidation of Fe(OH) suspensions. Bull Chem Soc Japan 47, 1646–1650.CrossRefGoogle Scholar
  6. 6.
    Hasegawa M, Hokukoku S (1978). US Patent 4,101,435.Google Scholar
  7. 7.
    Molday R, Mackenzie D (1982). Immunospecific ferromagnetic iron-dextran reagents for the labelling and magnetic separation of cells. J Immunol Meth 52, 353–367.CrossRefGoogle Scholar
  8. 8.
    Whitehead RA, Chagnon MS, Groman EV, Josephson L (1985). US Patent 4, 554, 088.Google Scholar
  9. 9.
    Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD (1988). The effects of iron oxides on proton relaxivity. Magn Reson Imaging 6, 647–653.CrossRefGoogle Scholar
  10. 10.
    Stark DD, Weissleder R, Elizondo G et al (1988). Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297–301.Google Scholar
  11. 11.
    Jung CW, Jacobs P (1995). Physical and chemical properties ofsuperparamagnetic iron oxide MR contrast agents: ferumoxides,,ferumoxtran, ferumoxsil. Magn Reson Imaging 13, 661–674.CrossRefGoogle Scholar
  12. 12.
    Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990). Ultrasmall super-paramagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175, 489–493.Google Scholar
  13. 13.
    McLachlan SJ, Morris MR, Lucas MA et al (1994). Phase I clinical evaluation of a new iron oxide MR contrast agent. Radiology 4, 301–307.Google Scholar
  14. 14.
    Shen T, Weissleder R, Papisov M, Bogdanov A Jr, Brady TJ (1993). Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties. Magn Reson Med 29, 599.Google Scholar
  15. 15.
    Weissleder R (1996). Monocrystalline iron oxide particles for studying biological tissues. US Patent 5,492,814.Google Scholar
  16. 16.
    Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991). Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684–687. ADSCrossRefGoogle Scholar
  17. 17.
    Douglas T, Dickson DPE, Betteridge S, Chamock J, Gamer CD, Mann S (1995). Synthesis and structure of an iron(III) sulfide-ferritin bioinorganic nanocomposite. Science 269, 54–57. ADSCrossRefGoogle Scholar
  18. 18.
    Hainfeld JF (1992). Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy. Proc Natl Acad Sci USA 89, 11064–11068. ADSCrossRefGoogle Scholar
  19. 19.
    Meldrum FC, Heywood BR, Mann S (1992). Magnetoferritin in vitro synthesis of a novel magnetic protein. Science 257, 522–523. ADSCrossRefGoogle Scholar
  20. 20.
    Douglas T, Bulte JWM, Dickson DPE et al (1995). Inorganic-protein interactions in the synthesis ofa ferrimagnetic nanocomposite. In Hybrid organic-inorganic composites. Mark JE, Lee CY-C, Bianconi PA (Eds), American Chemical Society, Washington D.C., ACS Symposium Series 585, 19–28.Google Scholar
  21. 21.
    Mann S (1996). Ferritin with ferrimagnetically ordered core and method. US Patent 5,491,219.Google Scholar
  22. 22.
    Pankhurst QA, Betteridge S, Dickson DPE, Douglas T, Mann S, Frankel RB (1994). Mössbauer spectroscopic studies of magnetoferritin. Hyperfine Interact 90, 847–851. ADSCrossRefGoogle Scholar
  23. 23.
    Butte JWM, Douglas T, Mann S et al (1994). Magnetoferritin: biomineralization as a novel molecular approach in the design of iron-oxide-based magnetic resonance contrast agents. Invest Radiol 29, S214 - S216.CrossRefGoogle Scholar
  24. 24.
    Butte JWM, Douglas T, Mann S et al (1994). Magnetoferritin: characterization ofa novel superparamagnetic MR contrast agent. J Magn Reson Imaging 4, 497–505.Google Scholar
  25. 25.
    Gider S, Awschalom DD, Douglas T, Mann S, Chaparala M (1995). Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science 268, 77–80.ADSCrossRefGoogle Scholar
  26. 26.
    Vymazal J, Brooks RA, Zak O, McRill C, Shen C, Di Chiro G (1992). TI and T2 offerritin at different field strengths: effect on MRI. Magn Reson Med 27, 368–374.CrossRefGoogle Scholar
  27. 27.
    Vymazal J, Zak O, Butte JWM, Aisen P, Brooks RA (1996). T1 and T2 offerritin solutions: effect of loading factor. Magn Reson Med 36, 61–65.CrossRefGoogle Scholar
  28. 28.
    Butte JWM, Douglas T, Mann S, Vymazal J, Laughlin PG, Frank JA (1995). Initial assessment of magnetoferritin biokinetics and proton relaxation enhancement in rats. Acad Radiol 2, 871–878.CrossRefGoogle Scholar
  29. 29.
    Butte JWM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA (1993). Frequency dependence of MR relaxation times. II. Iron oxides. Journal of Magn Reson Imaging 3, 641–648.CrossRefGoogle Scholar
  30. 30.
    Tiefenauer LX, Kühne G, Andres RY (1993). Antibody-magnetite nanoparticles: in vitro characterization ofa potential tumor-specific contrast agent for magnetic resonance imaging. Bioconj Chem 4, 347–352.CrossRefGoogle Scholar
  31. 31.
    Butte JWM, Hoekstra Y, Kamman RL et al (1992) Specific MR imaging of human lymphocytes by monoclonal antibody guided dextran-magnetite particles. Magn Reson Med 25, 148–157.CrossRefGoogle Scholar
  32. 32.
    Gillis P, Koenig SH (1987). Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn Reson Med 5, 323–345.CrossRefGoogle Scholar
  33. 33.
    Solomon I (1955). Relaxation processes in a system of two spins. Phys Rev 99, 559–565.ADSCrossRefGoogle Scholar
  34. 34.
    Bloembergen N (1957). Proton relaxation times in paramagnetic solutions. J Chem Phys 27, 572–573.ADSCrossRefGoogle Scholar
  35. 35.
    Muller, RN, Vallet P, Maton F et al (1990). Recent developments in design, characterization, and understanding of MRI and MRS contrast media. Invest Radiol, 25, S34 - S36.CrossRefGoogle Scholar
  36. 36.
    Magin RL, Bacic G, Niesman MR, Alameda JC Jr, Wright SM, Swartz HM (1991). Dextran magnetite as a liver contrast agent. Magn Reson Med 20, 1–16.Google Scholar
  37. 37.
    Roch A, Muller RN (1992). Longitudinal relaxation of water protons in colloidal suspensions of super-paramagnetic crystals. Proceedings of the Society of Magnetic Resonance in Medicine, Eleventh Annual Meeting, p. 1447.Google Scholar
  38. 38.
    Roch A (1994). Etudes theoriques et experimentales des phenomenes de relaxation protonique induits par les nanoparticules superparamagnetiques, nouveaux agents de contraste pour 1’IRM. Ph.D. thesis, University of Mons-Hainaut.Google Scholar
  39. 39.
    Gueron M (1975). Nuclear relaxation in macromolecules by paramagnetic ions: A novel mechanism. J Magn Reson 19, 58–66.ADSGoogle Scholar
  40. 40.
    Roch A, Gillis P, Muller RN (1995). Longitudinal relaxation of water protons in colloidal suspensions of ultra small superparamagnetic iron oxide. Proceedings of the Society of Magnetic Resonance, Third Annual Meeting, p. 1094.Google Scholar
  41. 41.
    Koenig, SH, Kellar KE (1995). Theory of I/TI and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 34, 227–233.CrossRefGoogle Scholar
  42. 42.
    Bulte JWM, Brooks RA, Vymazal J, Frank JA (1996). 1/T1 NMRD profiles of solutions ofmonocrystalline iron oxide nanoparticles: theory and experiment. Proceedings of the International Society for Magnetic Resonance in Medicine, Fourth Annual Meeting, p. 1707.Google Scholar
  43. 43.
    Butte JWM, Brooks RA, Vymazal J, Frank JA (1996). 1/T2 NMRD profiles of solutions ofmonocrystalline iron oxide nanoparticles: theory and experiment. Proceedings of the International Society for Magnetic Resonance in Medicine, Fourth Annual Meeting, p. 1708.Google Scholar
  44. 44.
    Butte JWM, Brooks RA, Vymazal J, Frank JA (1996). Tl and T2 relaxometry ofmonocrystalline iron oxide nanoparticles (MION-46). MAGMA 4, S104.Google Scholar
  45. 45.
    Freed JH (1978). Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. J Chem Phys 68, 4034–4037.ADSCrossRefGoogle Scholar
  46. 46.
    Weissleder R (1994). Liver MR imaging with iron oxides: toward concensus and clinical practice. Radiology 193, 593–595.Google Scholar
  47. 47.
    Weissleder R, Bogdanov A, Neuwelt EA, Papisov M (1995). Long-circulating iron oxides for MR imaging. Adv Drug Del Rev 16, 321–334.CrossRefGoogle Scholar
  48. 48.
    Josephson L, Groman EV, Menz E, Lewis JM, Bengele H (1990). A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent. Magn Reson Imaging 8, 637–646.CrossRefGoogle Scholar
  49. 49.
    Reimer P, Weissleder R, Lee AS, Wittenberg J, Brady TJ (1990). Receptor imaging: application to MR imaging of liver cancer. Radiology 177, 729–734.Google Scholar
  50. 50.
    Leveille-Webster CR, Rogers J, Arias J (1996). Use of an asialoglycoprotein receptor-targeted magnetic resonance contrast agent to study changes in receptor biology during liver regeneration and endotoxemia in rats. Hepatology 23, 1631–1641.CrossRefGoogle Scholar
  51. 51.
    Schaffer BK, Linker C, Papisov M, et al (1993). MION-ASF: Biokinetics of an MR receptor agent. Magn Reson Imaging 11, 411–417.CrossRefGoogle Scholar
  52. 52.
    Dutton AH, Tokuyasu KT, Singer SJ (1979). Iron-dextran antibody conjugates: general method for simultaneous staining of two components in high-resolution immuno-electron microscopy. Proc Natl Acad Sci USA 76, 3392–3396.ADSCrossRefGoogle Scholar
  53. 53.
    Renshaw PF, Owen CS, Evans AE, Leigh Jr JS (1986). Immunospecific NMR contrast agents. Magn Reson Imaging 4, 351–357.Google Scholar
  54. 54.
    Cerdan S, Lötscher HR, Künnecke B, Seelig J (1989). Monoclonal antibody-coated magnetite particles as contrast agents in magnetic resonance imaging of tumors. Magn Reson Med 12, 151–163.CrossRefGoogle Scholar
  55. 55.
    Tiefenauer LX, Tschirky A, Kühne G, Andres RY (1996). In vivo evaluation ofmagnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14 391–402.Google Scholar
  56. 56.
    Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ (1991). Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182, 381–385.Google Scholar
  57. 57.
    Frank H, Weissleder R, Papisov M (1995). Darstellung and quantifizierung von akuten myokardinfarkten mittels antikòrper-gebundenem MR-kontrastmittel. Z Kardiol 84, 311–315.Google Scholar
  58. 58.
    Weissleder R, Lee AS, Fischman AJ et al (1991). Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology 181, 245–249.Google Scholar
  59. 59.
    Remsen LG, McCormick CI, Roman-Goldstein S et al (1996). MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. Amer J Neuroradiol 17, 411–418.Google Scholar
  60. 60.
    Reimer P, Weissleder R, Shen T, Knoefel WT, Brady TJ (1994). Pancreatic resceptors: initial feasibility studies with a targeted contrast agent for MR imaging. Radiology 193, 527–531.Google Scholar
  61. 61.
    Shen TT, Bogdanov Jr. A, Bogdanova A, Poss K, Brady TJ, Weissleder R (1996). Magnetically labeled se-cretin retains receptor affinity to pancreas acinar cells. Bioconj Chemistry 7, 311–316.Google Scholar
  62. 62.
    Kresse M (1994). Spezifische kontrastmittel für die magnetresonanz-tomographie: herstellung and charakterisierung von superparamagnetischen transferrin-dextran-and transferrin-chondroitin-magnetiten. Thesis, Freie Universität Berlin.Google Scholar
  63. 63.
    Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V. Targeting of ultrasmall superparamagnetic iron oxides (SPIO) to tumor cells in vivo by using transferrin-receptor pathways. Magn Reson Med, in press.Google Scholar
  64. 64.
    Enochs WS, Schaffer B, Bhide PG et al (1993). MR imaging of slow axonal transport in vivo. Exp Neurology 123, 235–242.Google Scholar
  65. 65.
    Enochs WS, Weissleder R (1994). MR imaging of the peripheral nervous system. Journal of Magn Reson Imaging 4, 251–257.CrossRefGoogle Scholar
  66. 66.
    van Everdingen KJ, Enochs WS, Bhide PG et al (1994). Determinants of in vivo MR imaging of slow axonal transport. Radiology 193, 485–491.Google Scholar
  67. 67.
    Filler AG (1994). Axonal transport and MR imaging: prospects for contrast agent development. J Magn Reson Imaging 4 259–267.CrossRefGoogle Scholar
  68. 68.
    Petropoulos AE, Schaffer BK, Cheney ML, Enochs S, Zimmer C, Weissleder R (1995). MR imaging of neuronal transport in the guinea pig facial nerve: initial findings. Acta Otolaryngol 115, 512–516.CrossRefGoogle Scholar
  69. 69.
    Norman AB, Thomas SR, Pratt RG, Lu SY, Norgren RB (1992). Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Res 594, 279–283.CrossRefGoogle Scholar
  70. 70.
    Hawrylak N, Ghosh P, Broadus J, Schlueter C, Greenough WT, Lauterbur PC (1993). Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp Neurology 121, 181–192.Google Scholar
  71. 71.
    Butte JWM, Ma LD, Magin RL et al (1993). Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 29, 32–37.CrossRefGoogle Scholar
  72. 72.
    Yeh T-c, Zhang W, Ildstad ST, Ho C (1993). Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med 30, 617–625.CrossRefGoogle Scholar
  73. 73.
    Yeh T-c, Zhang W, Ildstad ST, Ho C (1995). In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med 33 200–208.CrossRefGoogle Scholar
  74. 74.
    Butte JWM, Laughlin PG, Jordan EK, Tran VA, Vymazal J, Frank JA (1996). Tagging of T cells with super-paramagnetic iron oxide: uptake kinetics and relaxometry. Acad Radiol 3, S301–303.CrossRefGoogle Scholar
  75. 75.
    Butte JWM, Kalman RL, Go KG et al (1988). Assessment of dextran-magnetite particles as MRI contrast agent for cerebral malignancies: studies on cerebral uptake after blood-brain barrier disruption. Proceedings of the Society of Magnetic Resonance in Medicine, Seventh Annual Meeting, Works in progress, p. 9.Google Scholar
  76. 76.
    Bulte JWM, Kamman RL, Go KG et al (1989). Magnetite-enhanced MR imaging of blood-brain barrier impairment in rats. Proceedings of the Society of Magnetic Resonance in Medicine, Book of Abstracts, Eighth Annual Meeting, p. 357.Google Scholar
  77. 77.
    Bulte JWM, de Jonge MWA, de Leij L et al (1990). Passage of DMP across a disrupted bbb in the context of antibody-mediated MR imaging of brain metastases. Acta Neurochir S51, 43–45.Google Scholar
  78. 78.
    Bulte JWM, de Jonge MWA, Kamman RL et al (1993). Magnetite as a potent contrast-enhancing agent in magnetic resonance imaging to visualize blood-brain barrier disruption. Acta Neurochir S57, 30–34.Google Scholar
  79. 79.
    Bulte JWM (1991). Dextran-magnetite particles as a new MR contrast agent for selective MR imaging of brain metastases. Ph.D. thesis, University of Groningen.Google Scholar
  80. 80.
    Bulte JWM, Jonge MWA, Kamman RL et al (1992). Dextran-magnetite particles: Contrast enhanced MRI of blood-brain barrier disruption in a rat model. Magn Reson Med 23, 215–223.Google Scholar
  81. 81.
    Neuwelt EA, Weissleder R, Nilaver G et al (1994). Delivery of virus-sized iron oxide particles to rodent CNS neurons. Neurosurgery 34, 777–784.CrossRefGoogle Scholar
  82. 82.
    Zimmer C, Weissleder R, O’Connor D, LaPointe L, Brady TJ, Enochs WS (1995). Cerebral iron oxide distribution: in vivo mapping with MR imaging. Radiology 196, 521–527.Google Scholar
  83. 83.
    Muldoon LL, Nilaver G, Kroll RA (1995). Comparison ofintracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain. Amer J Pathol 147, 1840–1851.Google Scholar
  84. 84.
    Kroll A, Pagel MA, Muldoon LL, Roman-Goldstein S, Neuwelt EA (1996). Increasing volume of distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurgery 38, 746–754.Google Scholar
  85. 85.
    Zimmer C, Weissleder R, Poss K, Bogdanova A, Wright Jr SC, Enochs WS (1995). MR imaging ofphagocytosis in experimental gliomas. Radiology 197, 533–538.Google Scholar
  86. 86.
    Xu S, Jordan EK, Bulte JWM et al (1997). MION-46L enhanced in vivo MR microscopy in the SIL relapsing remitting experimental allergic encephalomyelitis mouse model: early histopathological correlation. Proceedings of the International Society for Magnetic Resonance in Medicine, Fifth Annual Meeting, 1604.Google Scholar
  87. 87.
    Reisfeld B, Blackband S, Calhoun V, Grossman S, Eller S, Leong K (1993). The use of magnetic resonance imaging to track controlled drug release and transport in the brain. Magn Reson Imaging 11, 247–252.Google Scholar
  88. 88.
    Weissleder R, Bogdanov A, Frank H et al (1993). A drug system (PDH) for interventional radiology–Synthesis, properties, and efficacy. Invest Radiol 28, 1083–1089.CrossRefGoogle Scholar
  89. 89.
    Weissleder R, Poss K, Wilkinson R, Zhou C, Bogdanov Jr A(1995). Quantitation of slow drug release from an implantable and degradable gentamicin conjugate by in vivo magnetic resonance imaging. Antimicrobial Agents Chemother 39, 839–845.CrossRefGoogle Scholar
  90. 90.
    Rainov NG, Zimmer C, Chase M et al (1995). Selective uptake of viral and monocrystalline particles delivered intro-arterially to experimental brain neoplasms. Human Gene Therapy 6, 1543–1552.CrossRefGoogle Scholar
  91. 91.
    Patrizio G, Elizondo G, Fretz C, Eley CGS, Stark DD, Ferrucci JT (1989). Cancer targeted liposomes containing superparamagnetic iron oxide: FERROSOMES. Proceedings of the Society of Magnetic Resonance in Medicine, Book of Abstracts, Eighth Annual Meeting, p. 327.Google Scholar
  92. 92.
    White DL, Tzika AA, Aicher KP, Engelstad BL, Price DC (1990). Plasma clearance offerrosomes, a long-lived superparamagnetic MRI contrast agent. Proceedings of the Society of Magnetic Resonance in Medicine, Book of Abstracts, Ninth Annual Meeting, p. 51.Google Scholar
  93. 93.
    Bogdanov AA Jr., Martin C, Weissleder R, Brady Ti (1994). Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid: preparation of ferrosomes. Biochim Biophys Acta 1193, 212–218.CrossRefGoogle Scholar
  94. 94.
    De Cuyper M, Joniau M (1988). Magnetoliposomes–formation and structural characterization. Eur Biophys J 15, 311–319.Google Scholar
  95. 95.
    Pauser S, Wagner S, Reszka R, Bernarding J, Wolf KJ (1996). MRI as a screening method for tumor-specific liposomes. MAG*MA 4, S149 - S150.Google Scholar
  96. 96.
    Bulte JWM, de Cuyper M, Despres D, Brooks RA, Frank JA (1997). PEGylated magnetoliposomes as long-circulating drug carriers for MR imaging. Proceedings of the International Society for Magnetic Resonance in Medicine, Fifth Annual Meeting, 1596.Google Scholar
  97. 97.
    Sipkins DA, Ch’en IY, Song CK, Cheresh DA, Bednarski MD, Li KCP (1995). MR imaging of tumor-induced angiogenesis using antibody-conjugated paramagnetic liposomes. Proceedings of the Society of Magnetic Resonance, Third Annual Meeting, p. 177.Google Scholar
  98. 98.
    Sipkins DA, Gijbels K, Tropper FD, Steinman L, Bednarski MD, Li KCP (1995). Antibody-conjugated paramagnetic liposomes (ACPLs): tissue specific contrast agents for disease processes. Proceedings of the Society of Magnetic Resonance, Third Annual Meeting, p. 1139.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jeff W. M. Bulte
    • 1
  • Rodney A. Brooks
    • 2
  1. 1.Laboratory of Diagnostic Radiology Research (OIR, OD)NINDS National Institutes of HealthBethesdaUSA
  2. 2.Neuroimaging BranchNINDS National Institutes of HealthBethesdaUSA

Personalised recommendations