Preparation and Characterization of Magnetic Nanospheres for in Vivo Application

  • Cordula Grüttner
  • Joachim Teller
  • Wolfgang Schütt
  • Fritz Westphal
  • Carl Schümichen
  • Bernd-R. Paulke


New biodegradable magnetic nanospheres were synthesized for the application in the magnetic field assisted radionuclide therapy. For this purpose, superparamagnetic iron oxide cores were coated with several hydrophilic polymers, such as dextran, starch, chitosan, ficoll, polyethylene imine and polyvinylpyrrolidone. The different surface properties of these magnetic polymer nanospheres were demonstrated by a significant variation of the electrophoretic mobility of the particles in dependence on the pH-value.


Iron Oxide Zeta Potential Magnetic Nanoparticles Polyethylene Glycol Polyethylene Imine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Widder KJ, Senyei AE, and Ranney DF (1979). Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharm Chemotherapy 16, 213–268.CrossRefGoogle Scholar
  2. 2.
    Gupta PK, and Hung CT (1989). Magnetically controlled targeted micro-carrier systems. Life Sciences 44, 175–186.CrossRefGoogle Scholar
  3. 3.
    Schutt W, Grüttner C, Häfeli U, Zborowski M, Teller J, Putzar H, and Schümichen C (1996). Applications of magnetic targeting in diagnosis and therapy - possibilities and limitations. Hybridoma: J Mol Immunology and Exp and Clinical Immunotherapy, in press.Google Scholar
  4. 4.
    Häfeli UO, Sweeney SM, Beresford BA, Sim EH, and Macklis RM (1994). Magnetically directed poly(lactic acid) 90Y-microspheres: Novel agents for targeted intracavitary radiotherapy. J Biomed Mat Res 28, 901–908.Google Scholar
  5. 5.
    Häfeli UO, Sweeney SM, Beresford BA, Humm JL, and Macklis RM (1995). Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 22, 147–155.Google Scholar
  6. 6.
    Häfeli UO, Pauer GJ, and Macklis RM (1995). Treatment of mouse tumors with radioactive magnetic microspheres: model for intracavitary radiotherapy. Proceed Intern Symp Control Rel Bioact Mat 22, 89–90.Google Scholar
  7. 7.
    German Patent (1995). A-Nr. 195 29087. 9.Google Scholar
  8. 8.
    Weber C, Rajnoch C, Loth F, Schima H, and Falkenhagen D (1994). The microspheres detoxification system (MDS). A new extracorporeal blood purification technology based on recirculated microspherical adsorbent particles. Int J Artifical Org 17, 595–602.Google Scholar
  9. 9.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, and Smith F (1956). Colorimetric method for the determination of sugars and related substances. Anal Chem 28, 350–356.CrossRefGoogle Scholar
  10. 10.
    Müller RH, Mehnert W, Lucks JS, Schwarz C, zur Mühlen A, Weyers H, Freitas C, and Rühl D (1995). Solid lipid nanoparticles (SLN)–an alternative colloidal carrier system for controlled drug delivery. Eur J Biopharm 41, 62–69.Google Scholar
  11. 11.
    Papisov MI (1995). Modeling in vivo transfer of long-circulating polymers (two cases of long circulating polymers and factors affecting their transfer in vivo). Advanced Drug Delivery Reviews 16, 127–139.CrossRefGoogle Scholar
  12. 12.
    The scanning electron microscopy studies have been carried out by Urs Häfeli and Kent Wika at the Cleveland Clinic Foundation.Google Scholar
  13. 13.
    The laser diffractometry measurements have been carried out by RH Müller, and K Thode at the Free University of Berlin.Google Scholar
  14. 14.
    Bach-Gansmo T (1993). Ferrimagnetic susceptibility contrast agents. Acta Radiologica Suppl 34, 2–30.Google Scholar
  15. 15.
    Molday RS, and Mackenzie D (1982). Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 52, 353–367.CrossRefGoogle Scholar
  16. 16.
    Carlsen JE, Moller ML, and Lund JO (1980). Comparison offour commercial Tc-99m (Sn)-DTPA preparations used for the measurement of glomerular filtration rate: Concise communication. J Nucl Med 21, 126–129.Google Scholar
  17. 17.
    Weißleder R, Bogdanov A, Neuwelt EA, and Papisov M (1995). Long-circulating iron oxides for MR imaging. Advanced Drug Delivery Review 16, 321–334.CrossRefGoogle Scholar
  18. 18.
    Reimer P, and Weißleder R (1996). Entwicklung und experimenteller Einsatz von rezeptorspezifischen MR-Kontrastmitteln. Radiologe 36, 153–163.CrossRefGoogle Scholar
  19. 19.
    Gref R, Minamitake Y, Pracchia MT, Trubetskoy V, Torchilin V, and Langer R (1994). Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603.ADSCrossRefGoogle Scholar
  20. 20.
    Lück M, Paulke B-R, Schröder W, Blunk T, and Müller RH (1996). Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J Biomed Mater Res, submitted.Google Scholar
  21. 21.
    The measurements were carried out on a vibrating sample magnetometer (Oxford Instr.) in cooperation with W. Schüppel, and R. Müller at the Institut für Physikalische Hochtechnologie Jena.Google Scholar
  22. 22.
    Jung CW and Jacobs P (1995). Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, Ferumoxtran, Ferumoxsil. Magn. Res. Imaging 13, 661–674.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Cordula Grüttner
    • 1
  • Joachim Teller
    • 1
  • Wolfgang Schütt
    • 2
  • Fritz Westphal
    • 1
  • Carl Schümichen
    • 2
  • Bernd-R. Paulke
    • 3
  1. 1.Micro Caps Entwicklungs- und Vertriebs GmbHRostockGermany
  2. 2.Department of Nuclear MedicineUniversity of RostockRostockGermany
  3. 3.Fraunhofer-Institut für Angewandte PolymerforschungTeltow-SeehofGermany

Personalised recommendations