Advertisement

Targeting Magnetic Microspheres to Brain Tumors

  • Sharon K. Pulfer
  • James M. Gallo
Chapter

Abstract

Successful chemotherapy of metastatic brain tumors has been very difficult to achieve due to the inability of drugs to selectively target the tumor, the impenetrable nature of the blood-brain barrier, and the development of drug resistance. To circumvent some of these pitfalls, magnetic microspheres or nanospheres have been developed, and in various animal models have shown great promise in achieving localized drug delivery to tumors. In pursuit of developing magnetic drug carriers that might optimally target brain-tumors, various novel biodegradable magnetic microspheres were synthesized and evaluated in vitro and in animal models. This data is reviewed and future directions presented in the subsequent chapter. The general conclusion is that magnetic drug delivery systems do show an enhanced capacity to localize drugs in tumors, yet additional studies are needed to characterize the mechanisms that control magnetic particle disposition to fully exploit their drug delivery potential.

Keywords

Cyanogen Bromide Metastatic Brain Tumor Magnetic Microsphere Magnetic Carrier Brain Capillary Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greig NH (1989). Drug delivery to the brain by blood-brain circumvention and drug modification. In: Implications of the blood-brain and its manipulation, Volume 1. Neuwelt EA (Ed), New York, Plenum Publishing Company, 311–368.CrossRefGoogle Scholar
  2. 2.
    Greig NH, Jones HB and Cavanagh JB (1983). Blood-brain barrier integrity and host responses in experimental metastatic brain tumors. Clin. Expl. Metastasis 1, 229–246.Google Scholar
  3. 3.
    Hirano A, Ghatak NR, Becker NH, Zimmerman HM (1974). A comparison of the fine structure of small blood vessels in intracranial and retroperitoneal malignant lymphomas. Acta Neurophathol. 27, 93–104.CrossRefGoogle Scholar
  4. 4.
    Deane BR and Lantos TL (1981). The vasculature of experimental brain tumors, Part H. A quantitative assessment of morphological abnormalities. J. Neurol. Sci. 49, 67–77.CrossRefGoogle Scholar
  5. 5.
    Nishao S, Ohta M, Abe M and Kitamura K (1983). Microvascular abnormalities in ethylnitrosourea (ENU)induced rat brain tumors: structural basis for altered blood-brain barrier function. Acta Neuropathol. 59, 1–10.Google Scholar
  6. 6.
    Groothius DR, Fischer JM, Lapin G, Bigner DD and Vick NA (1982). Permeability of different experimental brain tumor models to horseradish peroxidase. J. Neuropath. Exp. Neuro. 41, 164–185.CrossRefGoogle Scholar
  7. 7.
    Warnke PC, Friedman HS, Bigner DD and Groothius DR (1987). Simultaneous measurements of blood flow and blood-to-tissue transport in xenotransplanted medulloblastomas. Cancer Res. 47, 1687–1690.Google Scholar
  8. 8.
    Levin VA, Freeman-Dove M and Landahl HD (1975). Permeability characteristics of brain adjacent to tumors in rats. Arch. Neurol. 32, 785–791.CrossRefGoogle Scholar
  9. 9.
    Claudio F, Cacace CF, Cornelia G, Coucourde F, Claudio L, Bevilacqua AM and Toma S (1990). Intraarterial chemotherapy through carotid transposition in advanced head and neck cancer. Cancer 65, 1465–1471.CrossRefGoogle Scholar
  10. 10.
    Nierenberg D, Harbaugh R, Maurer LH, Reeder T, Scott RNG, Fratkin J and Newman E (1991). Continuous intratumoral infusion of methotrexate for recurrent glioblastoma: a pilot study. Neurosurg. 28, 752–761.CrossRefGoogle Scholar
  11. 11.
    Kroin JS and Penn DR (1989). Implantable pumps to deliver drugs directly into the CNS. In Implications of the blood-brain and its manipulation. Neuwelt EA (Ed), New York, Plenum Publishing Company, Volume 1, 601–620.CrossRefGoogle Scholar
  12. 12.
    Brem H, Mahaley MS, Vick NA et al (1991). Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg. 74, 441–446.CrossRefGoogle Scholar
  13. 13.
    Neuwelt EA, Goldman D, Dahlborg SA, Crossen J, Ramsey F et al (1991). Primary CNS lymphoma treated with osmotic blood-brain barrier disruption: prolonged survival and preservation of cognitive function. J. Clin. Oncol. 9, 1580–1590.Google Scholar
  14. 14.
    Levitan H, Ziylan Z, Smith QR, Takasato Y and Rapoport SI (1984). Blood uptake of food dye, erythrosin B, prevented by plasma protein binding. Brain Res. 322, 131–134.CrossRefGoogle Scholar
  15. 15.
    Friden PM, Walus, Musso GF, Taylor MA, Malfroy B and Sturzyk RM (1991). Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc. Natl. Acad. Sci. USA 88, 4771–4775.ADSCrossRefGoogle Scholar
  16. 16.
    Storm G, Wilms HP and Crommelin DJA (1991). Liposomes and biotherapeutics. Biotherapy 3, 25–42.CrossRefGoogle Scholar
  17. 17.
    McArdle CS, Lewi H, Hansel D, Kerr DJ, McKillop JH and Willmott N (1988). Cytotoxic-loaded albumin microspheres: a novel approach to regional chemotherapy. Br. J. Surg. 75, 132–134.CrossRefGoogle Scholar
  18. 18.
    Chiannilkulchai N, Ammoury N, Caillou B, Devissaguet JP and Couvreur P (1990). Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemother. Pharmacol. 26, 122–126.Google Scholar
  19. 19.
    Gupta PK (1990). Drug targeting in cancer chemotherapy: a clinical perspective. J. Pharm Sci. 79, 949–962.CrossRefGoogle Scholar
  20. 20.
    Cuvier C, Roblot-Treupel L, Millot J, Lizard G, Chevillard S, Manfait M, Couvreur P and Poupou MF (1992). Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. Biochem. Pharmacol. 44, 509–517.CrossRefGoogle Scholar
  21. 21.
    Mickrisch GH, Rahman A, Pastan I, Gottesman M (1992). Increased effectiveness of liposomal-encapsulated doxorubicin in multidrug-resistant-transgenic mice compared with free doxorubicin. J. Natl. Cancer Inst. 84, 804–805.Google Scholar
  22. 22.
    Douglas SF, Davis SS and Ilium L (1986). Nanoparticles in drug delivery. CRC Crit. Rev. Ther. Drug Carrier Sys. 3, 233–261.Google Scholar
  23. 23.
    Widder KJ, Senyei AE and Scarpelli DG (1978). Magnetic microspheres: A model system for site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med. 58, 141–146.CrossRefGoogle Scholar
  24. 24.
    Widder KJ and Senyei AE (1989). Magnetic microspheres: A vehicle for selective targeting of drugs. In: Methods of Drug Delivery. Ihler GM (Ed), Oxford, England, Pergamon Press, 39–57.Google Scholar
  25. 25.
    Gupta PK and Hung CT (1989). Magnetically controlled targeted micro-carrier systems. Life Sci. 44, 175–186.CrossRefGoogle Scholar
  26. 26.
    Gallo JM, Gupta PK, Hung CT and Perrier DG (1989). Evaluation of drug delivery following the administration of magnetic albumin microspheres containing adriamycin to the rat. J. Pharm. Sci. 78, 190–194.CrossRefGoogle Scholar
  27. 27.
    Widder KJ. Morris, RM, Poore G, Howard Jr DP and Senyei AE (1981). Tumor remission in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc. Natl. Acad. Sci. 78, 579–581.ADSCrossRefGoogle Scholar
  28. 28.
    Widder KJ, Morris RM, Poore GA, Howards DP and Senyei AE (1983). Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: A total remission in Yoshida sarcoma-bearing rats. Eur. J. Cancer Clin. Oncol. 19, 135–139.CrossRefGoogle Scholar
  29. 29.
    Morimoto Y, Okumura MM, Sugibayashi K and Kato Y (1981). Preparation and magnetic guidance of magnetic albumin microspheres for site specific drug delivery in vivo. J. Pharm. Dyn. 4, 624–631.CrossRefGoogle Scholar
  30. 30.
    Sugibayashi K, Okumura M and Morimoto Y (1982). Antitumor effect of magnetic albumin microspheres entrapped on lung metastasis of A7974 in rats. Biomaterials 3, 181–186.CrossRefGoogle Scholar
  31. 31.
    Ranney DF (1986). Drug targeting to the lungs. Biochem. Pharmacol. 7, 1063–1069.CrossRefGoogle Scholar
  32. 32.
    Widder KJ, Marino PA, Morris RM, Howard DP, Poore GA and Senyei AE (1983). Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: Ultrastructural evaluation of microsphere disposition. Eur. J. Cancer Clin. Oncol. 19, 141–147.CrossRefGoogle Scholar
  33. 33.
    Gupta PK, Hung CT, Rao NS (1989). Ultrastructural disposition ofadriamycin-associated magnetic albumin microspheres in rats. J. Pharm. Sci. 78, 290–294.Google Scholar
  34. 34.
    Devineni D, Klein-Szanto A, Gallo JM (1995). Tissue distribution of methotrexate following administration as a solution and as a magnetic microsphere conjugate in rats bearing brain tumors. J. Neuro-Onc. 24, 143–152.CrossRefGoogle Scholar
  35. 35.
    Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW and Huhn D (1996). Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res. 56, 4694–4701.Google Scholar
  36. 36.
    Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M et al. (1996). Clinical experiences with magnetic drug targeting: a phase I study with 4 ’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56, 4686–4693.Google Scholar
  37. 37.
    Wusteman FS (1983). The involvement ofglycosaminoglycans at the endothelium. In: Biochemical interactions at the endothelium. Cryer A (Ed), Amsterdam, Elsevier Scientific Publishers, 79–109.Google Scholar
  38. 38.
    Ausprunk DH, Boudreau CL and Nelson DA (1981). Proteoglycans in the microvasculature. Am. J. Pathol. 101, 353–366.Google Scholar
  39. 39.
    Simionescu N, Simionescu M and Palade GE (1981). Differentiated microdomains on the luminal surface of the capillary endothelium. J. Cell Biol. 90, 605–613.CrossRefGoogle Scholar
  40. 40.
    Simionescu M and Simionescu N (1986). Function of the endothelial cell surface. Ann. Rev. Physiol. 48, 279–293.CrossRefGoogle Scholar
  41. 41.
    Vasil E, Simionescu M and Simionescu N (1983). Visualization of the binding, endocytosis. and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J. Cell Biol. 96, 1677–1689.CrossRefGoogle Scholar
  42. 42.
    Pardridge WM (1988). Recent advances in blood-brain barrier transport. Ann. Rev. Pharmacol. Toxicol. 28, 25–39.CrossRefGoogle Scholar
  43. 43.
    Kumagai AK, Eisenberg JB and Pardridge WM (1987). Absorptive-mediated endocytosis of cationized albumin and a 3-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. J. Biol. Chem. 262, 15214–15291.Google Scholar
  44. 44.
    Pitha J (1983). Polymer-cell surface interactions and drug targeting. In: Target Drugs. Goldberg EP (Ed), New York, John Wiley and Sons, 113–126.Google Scholar
  45. 45.
    Yanagishita M. and Hascall VC (1984). Metabolism of proteoglycans in rat ovarian granulosa cell culture. J. Biol. Chem. 259, 10270–10283.Google Scholar
  46. 46.
    Figols J, Madrid JF and Cervos-Navarro J (1991). Lectins as differentiation markers of human gliomas. Histol. Histopath. 6, 79–85.Google Scholar
  47. 47.
    Moczar E, Raulais D, Poupon MF and Moczar M (1991). Heparin-binding sites of rat rhabdomyosarcoma cells with low and high metastatic capacity. Invasion Metastasis 11, 158–165.Google Scholar
  48. 48.
    Poste G (1980) The influence of cell-surface properties on the arrest of circulating melanoma cells. In: Tumor Cell Surface and Malignancy. Hynes R and Fox CF (Eds), New York, Alan R. Liss.Google Scholar
  49. 49.
    Smith KR and Borchardt RT (1989). Permeability and mechanism of albumin, cationized albumin and glycosylated albumin transcellular transport across monolayers of cultured bovine brain capillary endothelial cells. Pharm. Res. 6, 466–473.CrossRefGoogle Scholar
  50. 50.
    Hassan EE and Gallo JM (1993). Targeting anticancer drugs to the brain. I: Enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres. J. Drug Targeting 1, 7–14.CrossRefGoogle Scholar
  51. 51.
    Chakravarthy D and Smith DJ (1995). Preparation of a dextran-based degradable absorbent suitable for wound healing applications. J. Bioactive Compatible Polymers 10, 313–326.Google Scholar
  52. 52.
    Chakravarthy D, Rodway N, Schmidt S, Smith D, Evancho M and Sims R (1994). Evaluation of three new hydrocolloid dressings: retention of dressing integrity and biodegradability of absorbent components. J. Biomed. Mater. Res. 28, 1165–73.CrossRefGoogle Scholar
  53. 53.
    Axen R and Emback S (1971). Chemical fixation of enzymes to cyanogen halide activated polysaccharide carriers. Eur. J. Biochem. 18, 351–360.CrossRefGoogle Scholar
  54. 54.
    Gallo JM and Hassan EE (1988). Receptor-Mediated Magnetic Carriers: Basis for Targeting. Pharm. Res. 5, 300–304.CrossRefGoogle Scholar
  55. 55.
    Snyder SL and Sobocinski PZ (1975). An improved 2,4,6t rinitrobenzenesulfonic acid method for the determination of amines. Anal. Biochem. 64, 284–288.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Sharon K. Pulfer
    • 1
  • James M. Gallo
    • 1
  1. 1.Fox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations