Advertisement

Use of ESR, Mössbauer Spectroscopy, and Squid-Magnetometry for the Characterization of Magnetic Nanoparticles on the Base of Metal Iron and Its Implications in Vivo

  • Olga M. Mykhaylyk
  • Oleg N. Razumov
  • Alexandre K. Dudchenko
  • Yuri V. Pankratov
  • Eduard K. Dobrinsky
  • Vladimir N. Sosnitsky
  • Eduard A. Bakai
Chapter

Abstract

Spherical nanoparticles comprising metal iron prepared by condensation of metal vapor in high-pressure argon plasma, and stabilized by spontaneous adsorption of modifiers from the solutions in an inert atmosphere, contain a large amount of metal phase of up to 99% core weight. They are a promising material for in vivo applications. Methods for the synthesis of the components in the electron spin resonance (ESR) spectra, due to ferromagnetic resonance of iron nanodispersed particles, enable one to pick up line groups belonging to the ESR spectra of other iron species, and to obtain quantitative information about the nanodispersed iron distribution in organs of experimental animals. Two ESR lines, with g-factors 2.0–2.5 and 3.0–4.5 and line widths of 300–1500 Gauss in tissues, have been identified as induced by ferritin and/or hemosiderin. The method for quantifying ferritin iron in tissues, based on evidence derived from the ESR data with calibration against Mössbauer data, has been elaborated. Ferritin and/or hemosiderin molecules were found to possess magnetic susceptibility anisotropy and orient in a weak magnetic field. In the cores of ferritin and/or hemosiderin, magnetic phase transition takes place at temperatures below 125 K. Analysis of nanodispersed iron distribution and transformation upon intravenous injection into mice revealed fast biotransformation of nanoparticles with iron incorporation mainly into the ferritin core. The peculiarities in distribution and transformation of magnetic nanoparticles in the mouse tissue associated with properties of the surface coating have been found.

Keywords

Electron Spin Resonance Mossbauer Spectroscopy Electron Spin Resonance Spectrum Electron Spin Resonance Signal Iron Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roath S (1993). Biological and biomedical aspects of magnetic fluid technology.Magnetism and Magnetic 122, 329–334ADSCrossRefGoogle Scholar
  2. 2.
    Gillies GT, Ritter RC, Broaddus WC et al (1994). Magnetic manipulation instrumentation for medical physics research. Rev. Sci. Instrum. 65, 533–562.ADSCrossRefGoogle Scholar
  3. 3.
    Ferrucci JT, Stark DD (1990). Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. American Journal of Roentgenology 155, 943–950.CrossRefGoogle Scholar
  4. 4.
    Reimer P, Weissleder R, Lee AS et al (1990). Receptor imaging: application to MR imaging of liver cancer. Radiology 177, 729–734.Google Scholar
  5. 5.
    Chan DC, Kirpotin DB, Bunn PA (1993). Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials 122, 374–378.ADSCrossRefGoogle Scholar
  6. 6.
    Lauffer RB (1992). Iron, aging and human disease: historical background and new hypotheses. In: Iron And Human Disease. (ed: Lauffer R.B.), CRC Press Inc., Florida, 1–20.Google Scholar
  7. 7.
    Selden C, Owen JMP, Hopkins JMP and Peters TJ (1980). Studies on the concentration and cellular localization of iron proteins in liver biopsy specimens from patients with iron overload with special reference to their role in lysosomal disruptions. Brit. J. Haematol. 44, 593–598.CrossRefGoogle Scholar
  8. 8.
    Hershko CG, Graacham GW, Bates EA et al (1978). Non-specific serum iron in talassemia: An abnormal serum iron fraction of potential toxicity. Brit. J. Haematol. 40, 255–263.CrossRefGoogle Scholar
  9. 9.
    Gutterigde JMC and Halliwell B (1990). The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochemical Science 15, 129–135.CrossRefGoogle Scholar
  10. 10.
    Hibbs JB (1993). Cytokine induced synthesis of nitric oxide from L-arginin: a cytotoxic mechanism that targets intracellular iron. In: Iron in Central Nervous Systems Disorders. Riederer P and Youdim MBH (Eds), New York, Springer-Verlag, 155–172.CrossRefGoogle Scholar
  11. 11.
    Halliwell B and Gutteridge MC (1992). Biologically relevant metal ion-dependent hydroxyl radical generation: an update. FEBS Lett 307, 108–112.Google Scholar
  12. 12.
    Papisov MI, Bogdanov Ajr, Schaffer B et al (1993).)Colloidal magnetic resonance agents: effect of particle surface on hiodistribution. Journal of Magnetism and Magnetic Materials 122, 383–386.ADSCrossRefGoogle Scholar
  13. 13.
    Carthew P, Smith AG, Hider RC et al (1994). Potentiation of iron accumulation in cardiac myocytes during the treatment of iron overload in gerbils with the hydroxypyridinon iron chelator CP94. BioMetals 7, 267–271.CrossRefGoogle Scholar
  14. 14.
    Linder-Horowitz M, Ruettinger RT and Munro HN (1970). Iron induction of electrophoretically different ferritins in rat liver, heart and kidney. Biochimica et Biophysica Acta 200 442–448.CrossRefGoogle Scholar
  15. 15.
    Wittaker P, Chanderbhan R, Calvert R et al (1994). Cellular and molecular responses in the SpragueDawley rat to chronic iron overload. The Journal of Trace Elements in Experimental Medicine 7, 19–31.Google Scholar
  16. 16.
    Mikhailik OM, Pankratov YV, Bakai EA et al (1995). Surface structure of finely dispersed iron stabilized by spontaneous adsorption as derived from XPS and ESR evidence. Journal of Electron Spectroscopy 76, 695–702.CrossRefGoogle Scholar
  17. 17.
    Mikhailik OM, Pankratov YV, Bakai EA et al (1995). Surface structure offinely dispersed activated iron with immobilized interferon as derived from XPS and ESR evidence. Journal of Electron Spectroscopy 76, 689–694.CrossRefGoogle Scholar
  18. 18.
    Dudchenko AK, Grinko IE and Kuzema AS (1984). Device for preparation of ferromagnetic powders. Devices and Technique of Experiments (in Russian)1, 239.Google Scholar
  19. 19.
    Tarasova NI, Kubrina LN, Kovalenko OA, Vanin AF (1980). Localization offree iron in mouse liver cells. Studia Biophysics 80, 133–139.Google Scholar
  20. 20.
    Aasa R, Malmstron BG, Saltman P,Vanugard T (1963). The specific binding of iron(111) and copper(II) to transferrin and conalbumin. Biochimica et Biophysica Acta 75, 203.CrossRefGoogle Scholar
  21. 21.
    McIntyre NS and Zetaruk DG (1977). X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry 49 1521–29.CrossRefGoogle Scholar
  22. 22.
    Andrade JD (Ed.) (1985). X-Ray Photoelectron Spectroscopy (XPS). In Surface and Interfacial Aspects of Biomedical Polymers. Vol. 1 Surface Chemistry and Physics. Andrade J (Ed), New York, Plenum Press, 105–195.Google Scholar
  23. 23.
    Tzapin AI, Dvukhsherstnev SD, Malenkov AG, Vanin AF (1986). Change of ferromagnetic suspension in animal organism. Biophysics (USSR) 31, 1023–1026.Google Scholar
  24. 24.
    Tzapin AI, Ivanenko GF, Gluschenko NN, Fedorov UI (1987). Distribution and change of properties offerromagnetic iron particle in animal organism. Biophysics (USSR) 32, 132–134.Google Scholar
  25. 25.
    Shabarchina MM, Tzapin AI, Malenkov AG, Vanin AF (1990). Behavior of magnetic iron particle in animal organism. Biophysics (USSR) 35, 985–988.Google Scholar
  26. 26.
    Mikhailik OM, Pankratov YV and Bakai EA (1993). Biotransformation of intravenously injected finely dispersed iron powders. Journal of Magnetism and Magnetic Materials 122, 379–382.ADSCrossRefGoogle Scholar
  27. 27.
    Van Vleck JH (1951). Ferromagnetic Resonance. Physica 17, 234–240.ADSCrossRefMATHGoogle Scholar
  28. 28.
    Aisen P and Listowsky I (1980). Iron transport and storage proteins. Annual Reviews in Biochemistry 49 357–393.CrossRefGoogle Scholar
  29. 29.
    Heald SM, Stern EA, Bunker B et al (1979). Structure of the Iron-Containing Core in Ferritin by the Extended X-ray Absorption Fine Structure Technique. Journal of the American Chemical Society 101, 67–73.CrossRefGoogle Scholar
  30. 30.
    Hilty S, Webb B, Frankel RB et al (1994). Iron Core Formation in Horse Spleen Ferritin. J. Inorg. Biochem. 56, 173–182.CrossRefGoogle Scholar
  31. 31.
    Blaise A, Chappert J et Girardet J-L (1965). Magnetisme. Observation par mesures magnetiques et effet Mössbauer d’un antiferromagnetisme de grains fins dans la ferritine. C. R. Acad. Sc. Paris 261, 2310–2313.Google Scholar
  32. 32.
    Kaufman KS, Papaefthymiou GC, Frankel RB et al (1980). Nature of iron deposits on the cardiac walls in 13-thalassemia by Mössbauer spectroscopy. Biochimica et Biophysica Acta 629, 522–529.CrossRefGoogle Scholar
  33. 33.
    Bell SH, Weir MP, Dickson DPE et al (1984). Mössbauer spectroscopic studies of human hemosiderin and ferritin. Biochim. Biophys. Acta 787, 227–236.CrossRefGoogle Scholar
  34. 34.
    Vonsovsky SV (1971). Magnetism. Magnetic properties of ferro-, ferri-and antiferromagnetics. Nauka, Moskow, p. 171 (in Russian).Google Scholar
  35. 35.
    Chasteen ND, Antanaitis BC and Aisen P (1985). Iron Deposition in Apoferritin. Journal of Biological Chemistry 260, 2926–2929.Google Scholar
  36. 36.
    Boas JF and Troup GJ (1971). Electron spin resonance and Mössbauer effect studies offerritin. Biochimica et Biophysica Acta 229 68–84.CrossRefGoogle Scholar
  37. 37.
    Weir MP, Peters TJ and Gibson JF (1985). Electron spin resonance of splenic ferritin and haemosiderin. Biochimica et Biophysica Acta 828, 298–305.CrossRefGoogle Scholar
  38. 38.
    Rossiter MJ and Hodgson AEM (1965). A Mössbauer study offerric oxy-hydroxide. Journal Inorganic Nuclear Chemistry 27, 63–71.CrossRefGoogle Scholar
  39. 39.
    Krupyansky YF and Suzdalev IP (1975). Some peculiarities of magnetic properties ofa-Fe 2 O 3, small particles. Physics of solids (in Russian)17 588–590.Google Scholar
  40. 40.
    Bauminger ER, Harrison PM, Nowik I et al (1989). A Mössbauer spectroscopic study of the initial stages of iron core formation in horse spleen apoferritin: evidence for both isolated Fe(III) atoms and oxobridged Fe(III) dimers as early intermediates. Biochemistry 28, 5486–5493.CrossRefGoogle Scholar
  41. 41.
    Tsang CP, Boyle AJF, Morgon EH (1973). Mössbauer spectroscopy of iron in human and rabbit transferrin. Biochimica and Biophysica Acta 328, 84–94.CrossRefGoogle Scholar
  42. 42.
    Jumpertz CM and Rimbert JN (1993). Identification and characterization of the iron compounds in bone marrow by means of Mössbauer spectroscopy. BioMetals 6 207–213.Google Scholar
  43. 43.
    Yang C, Bryan AM, Theil EC et al (1986). Structural variations in soluble iron complexes of models for ferritin. Journal of Inorganic Biochemistry 28, 393–405.CrossRefGoogle Scholar
  44. 44.
    Rimbert JN, Dumas F, Richardot G (1986). Magnetic and quadrupolar studies of the iron storage overload in livers. Hyperfine Interactions. 29, 1439–1442.ADSCrossRefGoogle Scholar
  45. 45.
    Raikher YL and Stepanov VI (1995). Magnetic resonance ferrofluids: temperature effects. Journal of Magnetism and Magnetic Materials 149 34–37.ADSCrossRefGoogle Scholar
  46. 46.
    Fischer R and Heinrich HC (1992). Biosusceptometry–current status of clinical diagnostics and biomagnetic research. In: Hoke M et al (Eds), Biomagnetism: Clinical aspects. Elsevier Science Publishers BV, 573–581.Google Scholar
  47. 47.
    Nielsen P, Dullmann J, Wulthekel U et al (1993). Non-transferrin-bound-iron in serum and low-molecularweight-iron in the liver of dietary iron-loaded rats. Int. J. Biochem. 25, 223–232.CrossRefGoogle Scholar
  48. 48.
    Crichton RR and Ward RJ (1992). Structure and molecular biology of iron-binding proteins and the regulation offree iron pool. In: Iron and Human Disease. Lauffer RB (Ed.), Florida CRC Press Inc, 23–76.Google Scholar
  49. 49.
    Gref R, Domb A, Quellec Pet al (1995). The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced Drug Delivery Reviews 16, 215–233.CrossRefGoogle Scholar
  50. 50.
    Drysdale JW and Munro HN (1966). Regulation of synthesis and turnover offerritin in rat liver. Journal of Biological Chemistry 241 3630–3637.Google Scholar
  51. 51.
    Blunk T, Hochstrasser DF, Sanchez J-C et al (1993). Colloidal carriers for intravenous drug targeting: Plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 14, 1382–1387.CrossRefGoogle Scholar
  52. 52.
    Wertz JE and Bolton JR (1972). Electron Spin Resonance. New York, McGraw-Hill Book Company.Google Scholar
  53. 53.
    Beinert H (1982).Insights gained by ESR into the composition and function of the mitochondrial respiratory chain. Martonosi AN (Ed.), New York, Acad. Press.Google Scholar
  54. 54.
    Beinert H and Albracht SBJ (1982). New insights, ideas and unanswered questions concerning iron-sulfur clusters in mitochondria. Biochimica er Biophysica Acta 683 245–277.CrossRefGoogle Scholar
  55. 55.
    Goldansky VI and Herber RH (Eds.) (1968). Chemical Applications of Mössbauer Spectroscopy. New York and London, Academic Press.Google Scholar
  56. 56.
    Dickson DPE and Johnson CE (1980). Physiological and Medical Applications. In: Applications of Mössbauer Spectroscopy. Cohen RL (Ed.), New York, Academic Press, Vol. II, 209–248.CrossRefGoogle Scholar
  57. 57.
    Spartalian K and Lang G (1980) Oxygen Transport and Storage Materials. In: Applications of Mössbauer Spectroscopy. Cohen RL (Ed.), New York, Academic Press, Vol. II, 249–279.CrossRefGoogle Scholar
  58. 58.
    Pierre TGS, Pollard RK, Dickson DPE et al (1988). Mössbauer spectroscopic studies of deproteinised, sub-fractionated and reconstituted ferritins: the relationship between hemosiderin and ferritin. Biochimica et Biophysica Acta 952, 158–163.CrossRefGoogle Scholar
  59. 59.
    Bauminger ER, Cohen SG, Ofer S et al (1979). Quantitative studies of ferritin like iron in erythrocytes of thalassemia, sickle-cell anemia, and hemoglobin Hammers patients with Mössbauer spectroscopy. Proc. Nat. Acad. Sci. USA 76, 934–943.ADSCrossRefGoogle Scholar
  60. 60.
    Eme S (1983). SQUID-sensors. In: Biomagnetism: An Interdisciplinary Approach. Williamson, SG, Romani, GL, Kaufman, L, and Modena, I (Eds.) New York, Plenum Press, pp. 706.Google Scholar
  61. 61.
    Hoke et al (Eds.) (1992). Biomagnetism: Clinical aspects. Elsevier Science Publishers.Google Scholar
  62. 62.
    Maniewski R (1991). Magnetic studies on mechanical activity of the heart. Clinical Reviews in Biomedical Engineering 19, 203–229.Google Scholar
  63. 63.
    Cohen D. 1973. Ferromagnetic contamination in the lung and other organs of the human body. Science 180 745–48.ADSCrossRefGoogle Scholar
  64. 64.
    Moller W and Stahlhofen W (1992). In vivo measurement of hydrodynamic properties and activity of alveolar macrophages. In: Biomagnetism: Clinical aspects. Hoke et al (Eds.), Elsevier Science Publishers, 655–660.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Olga M. Mykhaylyk
    • 1
  • Oleg N. Razumov
    • 1
  • Alexandre K. Dudchenko
    • 1
  • Yuri V. Pankratov
    • 1
  • Eduard K. Dobrinsky
    • 2
  • Vladimir N. Sosnitsky
    • 1
  • Eduard A. Bakai
    • 1
  1. 1.“SONAR’ Research Center for BiotechSystems Ukrainian Acad. ScienceKievUkraine
  2. 2.State Research Institute for Chemistry and Technology of Elemental Organic CompoundsSaratovRussia

Personalised recommendations