Advertisement

Macro-Modeling of Solidification. Numerical Approximation Methods

  • Doru Michael Stefanescu

Abstract

From the analysis of solidification based on the energy transport equation presented in the previous section, it was seen that analytical solutions of this equation are not always available. Significant simplifying assumptions must be used, assumptions that are many times debilitating to the point that the solution is of little engineering interest. Fortunately, with the development of numerical methods and their application to the solution of partial differential equations, the most complicated equations can be solved numerically. Numerical solutions rely on replacing the continuous information contained in the exact solution of the differential equation with discrete values. Discretization equations are derived from the governing differential equation.

Keywords

Solidification Time Finite Difference Method Mold Filling Penetration Index Enthalpy Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang S. and D.M. Stefanescu, 1996, Metall. Mater. Trans. A, 27A: 2708CrossRefGoogle Scholar
  2. Dantzig J.A. and J. W. Wiese, 1985, Metall. Trans. B 16B: 195, 203CrossRefGoogle Scholar
  3. Hansen P. N., P.R. Sahm, and E. ‘lender, 1993, Trans. AFS 101: 443Google Scholar
  4. Hirt C.W. and B.D. Nichols, 1981, J. Computational Physics, 39: 201CrossRefGoogle Scholar
  5. Jiarong I,.I, B. I,iu, H. Xiang, H. Tong and Y. Xie, 1995, in Proceedings of the 61st World Foundry Congress, International Academic Publishers, Beijing China, p. 41Google Scholar
  6. Kreyszig E., 1988, Advanced Engineering Mathematics, John Wiley & Son, New YorkGoogle Scholar
  7. Kubo K. and R.D. Pehlke, 1985, Metall. Trans 16B: 359CrossRefGoogle Scholar
  8. Lee Y.W., E. Chang and C.F. Chieu, 1990, Metall. Trans 21B: 715CrossRefGoogle Scholar
  9. Mehrabian R., M. Keane, and M.C. Flemings, 1970, Metall. Trans 1: 1209Google Scholar
  10. Midea T.C. and D. Schmidt, 1999, Modern Casting,:47Google Scholar
  11. Niyama E., T.Uchida, M. Morikawa and S. Saito, 1982, AFS Cast Metal Research J. 7, 3: 52Google Scholar
  12. Ohnaka I., 1986, in State of the Art of Computer Simulation of Casting and Solidification Processes, H. Fredriksson ed., Les Editions de Physique, Les Ulis, France, p. 211Google Scholar
  13. Ohnaka I, 1993, in Modeling of Casting, Welding and Advanced Solidification Processes VI,Eds. T. S. Piwonka et al., TMS, p.337Google Scholar
  14. Ozisic M.N., 1994, Finite Difference Methods In Heat Transfer,CRC PressGoogle Scholar
  15. Patankar, S.V., 1980, Numerical Heat Transfer And Fluid Flow, Hemisphere Publ. Corp., New YorkGoogle Scholar
  16. Pham Q.T., 1986, International J. of Heat amp; Mass Transf 29: 285CrossRefGoogle Scholar
  17. Poirier D.R., P.J. Nandapurkar and S. Ganesan, 1991, Metall. Trans 22B: 1129CrossRefGoogle Scholar
  18. Sahm P.R., 1991, in Numerical Simulation of Casting Solidification in Automotive Applications, C. Kim and C.W. Kim eds., TMS, p. 45Google Scholar
  19. Schneider M.C. and C. Beckerman, 1995, Metall. Trans. A 26A: 2373CrossRefGoogle Scholar
  20. Stefanescu D.M and C.S. Kanetkar, 1985, in Computer Simulation of Microstructure Evolution, D.J. Srolovitz, ed., TMS-AIME, p. 997Google Scholar
  21. Stefanescu D.M. and T. S. Piwonka, 1996, in Applications of Computers, Robotics and Automation to the Foundry Industry, Proceedings of the Technical Forum, 62nd World Foundry Congress, Philadelphia, PA, CIATF, American Foundrymen’s Soc., Inc., p. 62Google Scholar
  22. Stefanescu D.M., S.R. Giese, T. S. Piwonka and A. Lane, 1996, AFS Trans. 104: 1233Google Scholar
  23. Thomas B., 1993, in Modeling of Casting, Welding and Advanced Solidification Processes VI,Eds. T. S. Piwonka et al., TMS, p.519Google Scholar
  24. Upadhya G. and A. J. Paul, 1994, AFS Trans. 102: 69Google Scholar
  25. Van Doormaal J.P. and G.D. Raithby, 1984, Numer. Heat Transfer, 7: 147Google Scholar
  26. Zou J., S. Shivkumar and D. Apelian, 1990, AFS Trans. 98: 897Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Doru Michael Stefanescu
    • 1
  1. 1.University of AlabamaTuscaloosaUSA

Personalised recommendations