Ultrasonic Focusing Radiators

  • L. D. Rozenberg
Part of the Ultrasonic Technology book series (ULTE, volume 1)


The intensity that can be generated from the surface of ultrasonic radiators is limited by a great many factors, for example, the fatigue life of the radiator material and heating due to electrical and mechanical losses; besides lowering the durability, heating can reduce the electromechanical coupling coefficient of the transducer material. Artificial cooling greatly complicates the device itself and the way in which it is used, and its very purpose is not always achieved, because piezoelectric ceramic materials have a low thermal conductivity and do not cool well, particularly in thick layers. Finally, the radiation of ultrasound into a liquid is beset with one other restrictive factor, cavitation, which consumes a large part of the energy radiated.


Particle Velocity Wave Front Focal Plane Focal Spot Focal Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. D. Rozenberg and M. G. Sirotyuk, Radiation of sound in a liquid with cavitation present, Akust. Zh., 6 (4): 478 (1960).Google Scholar
  2. 2.
    L. D. Rozenberg, Acoustic Focusing Systems, Moscow (1949).Google Scholar
  3. 3.
    I. V. Skards, A high-power ultrasonic installation for irradiating microorganisms, Akust. Zh., 2 (1): 84 (1956).Google Scholar
  4. 4.
    A. K. Burov, Production of high ultrasonic intensities in a liquid, Akust. Zh., 4 (4): 315–320 (1958).Google Scholar
  5. 5.
    J. Greutzmacher, Piezoelektrische Kristall mit Ultraschallkonvergenz [Piezoelectric crystals with ultrasonic convergence], Z. Phys., 96: 342 ( 1935.Google Scholar
  6. 6.
    J. W. Strutt (Rayleigh), Wave Theory of Light, GTTI, Moscow (1940).Google Scholar
  7. 7.
    P. Debye, Das Verhalten von Lichtewellen in der Nähe eines Brennpunktes oder einer Brennlinie [Composition of light-waves in the vicinity of a focal point or focal line], Ann. Phys., 30 (4): 775 (1909).MathSciNetGoogle Scholar
  8. 8.
    L. D. Rozenberg, Ultrasonic concentrators, Trudy Kommissii po Akustike, No. 8, p. 102 (1955).Google Scholar
  9. 9.
    H. T. O’Neil, Theory of focusing radiators, J. Acoust. Soc. Am., 21: 516 (1949).CrossRefGoogle Scholar
  10. 10.
    B. D. Tartakovskii, Diffraction of sound waves in convergent beams, Akust. Zh., 4 (4): 354 (1958).MathSciNetGoogle Scholar
  11. 11.
    A. Sommerfeld, Lectures on Theoretical Physics, Vol. 4 ( Optics), Academic Press, London (1954).MATHGoogle Scholar
  12. 12.
    L. D. Rozenberg, Planohyperbolic acoustic lenses, Trudy Kommissii po Akustike, No. 6, p. 114(1950).Google Scholar
  13. 13.
    L. D. Rozenberg, Planoelliptic acoustic lenses, Trudy Kommissii po Akustike, No. 5, p. 114 (1950).Google Scholar
  14. 14.
    T. S. Belle, V. M. Gorbunkov, and L. D. Rozenberg, The aberrational characteristics of acoustic lenses, Akust. Zh., 8 (3): 273 (1962).Google Scholar
  15. 15.
    L. D. Rozenberg, A double-mirror ultrasonic concentrator, Dokl. Akad, Nauk SSSR, 91 (5): 1091 (1953).Google Scholar
  16. 16.
    I. N. Kanevskii and L. D. Rozenberg, Computation of the acoustic field in the focal region of a cylindrical focusing system, Akust. Zh., 3 (1): 47 (1957).MathSciNetGoogle Scholar
  17. 17.
    L. D. Rozenberg, Analysis of gain of cylindrical sound-focusing systems, Akust. Zh., 1 (1): 70 (1955).Google Scholar
  18. 18.
    I. N. Kanevskii, Study of the field structure of a cylindrical ultrasonic concentrator, Akust. Zh., 7 (1): 40 (1961).MathSciNetGoogle Scholar
  19. 19.
    P. Drude, Theory of Optics, Dover, New York (1902).Google Scholar
  20. 20.
    I. N. Kanevskii and L. D. Rozenberg, Cylindrical focusing systems with a nonuniform amplitude distribution, Akust. Zh., 9 (4): 418 (1963).Google Scholar
  21. 21.
    A. I. Gubanov, Calculation of ultrasonic focusing, Zh. Tekh. Fiz., 19 (1): 30 (1949).Google Scholar
  22. 22.
    I. N. Kanevskii, Focusing of cylindrical ultrasonic waves in an absorptive medium, Akust. Zh., 10 (3): 309 (1964).Google Scholar
  23. 23.
    K. A. Naugolnykh and E. V. Romanenko, Amplification factor of a focusing system as a function of sound intensity, Akust. Zh., 5 (2): 191 (1959).Google Scholar
  24. 24.
    K. A. Naugolnykh and L. D. Rozenberg, Optimum operating conditions for a high-power concentrator, Akust. Zh., 6 (3): 352 (1960).Google Scholar
  25. 25.
    A. A. Anan’ev, Ceramic Sound Receivers, Izd. AN SSSR (1963), Chapter V, §2.Google Scholar
  26. 26.
    Y. Kikuchi and K. Fukushima, The performance and design procedure of the laminated magnetostriction vibrators, Sci. Rep. Res. Inst. Tokyo Univ. (B), 1 /2: 141 (1951).Google Scholar
  27. 27.
    G. W. Willard, Focusing ultrasonic radiator, J. Acoust. Soc. Am., 21: 360 (1949).Google Scholar
  28. 28.
    G. W. Willard, Focusing Ultrasonic Radiator, US Patent No$13,549,872 (1948); (1948); No. 2, 645, 727 (1948).Google Scholar
  29. 29.
    I. N. Kanevskii, Experimental investigation of cylindrical focusing systems, Akust. Zh., 6 (1): 123 (1960).Google Scholar
  30. 30.
    I. N. Kanevskii, Apparatus for the measurement of ultrasonic fields in a liquid, Izmer. Tekh., No. 8, p. 51 (1959).Google Scholar
  31. 31.
    Y. G. Lynn, R. L. Zwemer, A. J. Chick, and A. E. Miller, A new method for the generation and use of focused ultrasound in experimental biology, J. Gen. Physiol., 26: 179 (Nov., 1942 ).Google Scholar
  32. 32.
    G. Kossoff, Design of the C.A.L. ultrasonic generator for the treatment of Menière’s disease, Trans. IEEE Sonics and Ultrasonics, SU-11(2): 95 (1964).Google Scholar
  33. 33.
    Designing a line of ultrasonic equipment, Electr. Manufact., 52 (1): 110 (1953).Google Scholar
  34. 34.
    O. Mattiat, Transducers for producing ultrasonic waves, J. Acoust. Soc. Am. 25 (2): 291 (1953).CrossRefGoogle Scholar
  35. 35.
    A. L. W. Williams, Electroacoustic Device, US Patent No. 2,632,634 (Nov. 23, 1950 ).Google Scholar
  36. 36.
    T. F. Hueter and R. H. Bolt, Sonia, New York(1955).Google Scholar
  37. 37.
    G. Pickroth, Ultraschall-Verneblung in der Medizine [Ultrasonic atomization in medicine], Das Deutsche Gesundheitwesen, 13 (33): 1030 (1958).Google Scholar
  38. 38.
    E. B. Gerken, L. M. Ivantsov, and B. I. Kostin, The use of ultrasound for introducing solutions into the light source for spectral analysis, Zavod. Lab., 28 (12): 1451 (1962).Google Scholar
  39. 39.
    L. D. Rozenberg and M. G. Sirotyuk, Focusing Ultrasonic Concentrator, Authors Certificate USSR, No. 124217 (March 9, 1959 ).Google Scholar
  40. 40.
    L. D. Rozenberg and M. G. Sirotyuk, Apparatus for the generation of focused ultrasound of high intensity, Akust. Zh., 5 (2): 206 (1959).Google Scholar
  41. 41.
    L. Rosenberg, La génèration et l’ ètude des vibrations ultra-sonores de tres grande intensité [Generation and investigation of ultrasonic vibrations of very high intensity], Acustica, 12 (1): 40 (1962).Google Scholar
  42. 42.
    M. G. Sirotyuk, Balance of energy in a concentrator designed to supply ultrasound of high intensity, Akust. Zh., 6 (3): 410 (1960).Google Scholar
  43. 43.
    F. E. Fox and V. Griffing, Experimental investigation of ultrasonic intensity gain in water due to concave reflectors, J. Acoust. Soc. Am., 21 (4): 352 (1949).CrossRefGoogle Scholar
  44. 44.
    L. D. Rozenberg and M. G. Sirotyuk, A focusing radiator for the generation of superhigh intensity ultrasound at 1 Mc, Akust. Zh., 9 (1): 61 (1963).Google Scholar
  45. 45.
    E. V. Romanenko, Miniature piezoelectric ultrasonic receivers, Akust. Zh., 3 (4): 342 (1957).Google Scholar
  46. 46.
    L. D. Rozenberg, Einige physikalische Erscheinungen, die in hochintensiven Ultraschallfeldern entstehen [Physical effects occurring in high-intensityultrason is fields], Fourth Internat. Congr. on Acoustics, Copenhagen, 1962, Congress Report, Vol. 2, p. 179.Google Scholar
  47. 47.
    M. A. Isakovich, A resonance device of solid material for the focusing of ultrasound, Akust. Zh., 8 (1): 132 (1962).Google Scholar
  48. 48.
    M. G. Sirotyuk, An ultrasonic focusing concentrator using solid material, Akust. Zh., 8 (1): 124 (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • L. D. Rozenberg

There are no affiliations available

Personalised recommendations