Skip to main content

Regulation of G-Protein Coupled Receptor Cytosolic mRNA Binding Proteins

  • Chapter
RNA Binding Proteins

Part of the book series: Endocrine Updates ((ENDO,volume 16))

  • 242 Accesses

Abstract

The regulation of G-protein coupled receptor (GPCR) expression is an area of intense interest because GPCRs play a crucial role in many key physiological and pathological processes. Indeed, greater than 60% of all pharmaceuticals are targeted towards GPCRs. The ability to regulate GPCR protein expression at the post-transcriptional level provides a mechanism past the transcriptional regulatory point when genes are turned on or off. This allows a finer control of expression for the GPCRs that are critically involved in a myriad of critical cell functions such as growth, differentiation, and development. In the majority of instances of post-transcriptional regulation, the binding of specific proteins to defined sequences and/or structures in the target mRNA, governs splicing, nucleocytoplasmic transport, subcellular localization, translation and mRNA degradation. In this chapter, we focus on the regulation of GPCRs via cytosolic RNA binding proteins that, through interaction with specific sequences or structures in the mRNA, contribute to determining the level of protein expression by altering the rate of mRNA translation or its stability. Highlighted are our studies on RNA binding proteins that interact with the 5’ leader sequence of the angiotensin AT1 receptor, a GPCR that is critical to the control of blood pressure and fluid homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parola AL, Kobilka BK. 1994. The peptide product of a 5’ leader cistron in the ß2 adrenergic receptor mRNA inhibits receptor synthesis. J. Biol. Chem. 269: 4497–4505.

    Google Scholar 

  2. Hadcock JR, Wang HY, Malbon CC. 1989. Agonist-induced destabilization of betaadrenergic receptor mRNA. Attenuation of glucocorticoid-induced up-regulation of betaadrenergic receptors. J. Biol. Chem. 264: 19928–33.

    Google Scholar 

  3. Port JD, Huang LY, Malbon CC. 1992. Beta-adrenergic agonists that down-regulate receptor mRNA up-regulate a M(r) 35,000 protein(s) that selectively binds to betaadrenergic receptor mRNAs. J. Biol. Chem. 267: 24103–24108.

    Google Scholar 

  4. Theil EC. 1994. Iron regulatory elements (IREs): a family of mRNA non-coding sequences. Biochem. J. 304: 1–11.

    PubMed  Google Scholar 

  5. Yen TJ, Gay DA, Pachter JS, Cleveland DW. 1988. Autoregulated changes in stability of polyribosome-bound beta-tubulin mRNAs are specified by the first 13 translated nucleotides. Mol. Cell Biol. 8: 1224–1235.

    Google Scholar 

  6. Chen CY, You Y, Shyu AB. 1992. cellular proteins bind specifically to a purine-rich sequence necessary for the destabilization function of a c-fos protein-coding region determinant of mRNA instability. Mol. Cell Biol. 12: 5748–5757.

    Google Scholar 

  7. Bernstein PL, Herrick DJ, Prokipcak RD, Ross J. 1992. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev. 6: 642–654.

    Article  PubMed  CAS  Google Scholar 

  8. Shaw G, Kamen R. 1986. A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667.

    Article  PubMed  CAS  Google Scholar 

  9. Shyu AB, Belasco JG, Greenberg ME. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5: 221–231.

    Article  PubMed  CAS  Google Scholar 

  10. Wisdom R, Lee W. 1991. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 5: 232–243.

    Article  PubMed  CAS  Google Scholar 

  11. Ji H, Wu Z, Lee S, Zheng W, Verbalis JG, Sandberg K. 2000. Translational control in regulation of the renin angiotensin system. Comp. Biochem. Physiol. 126A (suppl 1): 132a.

    Google Scholar 

  12. Xu K, Murphy TJ. 2000. Reconstitution of angiotensin receptor mRNA down-regulation in vascular smooth muscle. Post-transcriptional control by protein kinase a but not mitogenic signaling directed by the 5’-untranslated region. J. Biol. Chem. 275: 76047611.

    Google Scholar 

  13. Spirin AS, 1996. Masked and translatable messenger ribonucleoprotein in higher eukaryotes. In Translational Control. J.W.B. Hershey, M.B. Mathews, N. Sonenberg, eds., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 319–334.

    Google Scholar 

  14. Kozak M. 1989. The scanning model for translation: an update. J. Cell Biol. 108: 229241.

    Google Scholar 

  15. Standart N, Jackson RJ. 1994. Regulation of translation by specific protein/mRNA interactions. Biochimie. 76: 867–79.

    Article  PubMed  CAS  Google Scholar 

  16. Kozak M. 1989. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol. Cell Biol. 9: 5073–5080.

    PubMed  CAS  Google Scholar 

  17. Kozak M. 1991. A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expr. 1: 111–115.

    PubMed  CAS  Google Scholar 

  18. Geballe AP, 2000. Translational control by upstream open reading frames. In Translation Control. N. Sonenberg, J.W.B. Hershey, M.B. Mathews, eds., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 595–614.

    Google Scholar 

  19. Mondino A, Jenkins MK. 1995. Accumulation of sequence-specific RNA-binding proteins in the cytosol of activated T cells undergoing RNA degradation and apoptosis. J. Biol. Chem. 270: 26593–26601.

    Google Scholar 

  20. Cao J, Geballe AP. 1996. Coding sequence-dependent ribosomal arrest at termination of translation. Mol. Cell Biol. 16: 603–608.

    Google Scholar 

  21. Adam SA, Nakagawa T, Swanson MS, Woodruff TK, Dreyfuss G. 1986. mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol. Cell Biol. 6: 2932–2943.

    Google Scholar 

  22. Rouault TA, Hentze MW, Haile DJ, Harford JB, Klausner RD. 1989. The iron-responsive element binding protein: a method for the affinity purification of a regulatory RNA-binding protein. Proc. Natl. Acad. Sci. U. S. A. 86: 5768–5772.

    Google Scholar 

  23. Klausner RD, Rouault TA, Harford JB. 1993. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72: 19–28.

    Article  PubMed  CAS  Google Scholar 

  24. Gray NK, Hentze MW. 1994. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13: 38823891.

    Google Scholar 

  25. Zuker M. 1989. Computer prediction of RNA structure. Methods Enzymol. 180: 262–288.

    Article  PubMed  CAS  Google Scholar 

  26. Kozak M. 1991. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115: 887–903.

    Article  PubMed  CAS  Google Scholar 

  27. Krishnamurthi K, Zheng W, Verbalis AD, Sandberg K. 1998. Regulation of cytosolic proteins binding cis elements in the 5’ leader sequence of the angiotensin AT1 receptor mRNA. Biochem. Biophys. Res. Commun. 245: 865–870.

    Google Scholar 

  28. Krishnamurthi K, Verbalis JG, Zheng W, Wu Z, Clerch LB, Sandberg K. 1999. Estrogen regulates angiotensin ATI receptor expression via cytosolic proteins that bind to the 5’ leader sequence of the receptor mRNA. Endocrinology 140: 5431–5434.

    Article  Google Scholar 

  29. Kozak M. 1987. An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 26: 8125–8148.

    Article  Google Scholar 

  30. Kozak M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187208.

    Google Scholar 

  31. Sonenberg N, Hershey JWB, Mathews MB, 2000. Translational control of gene expression. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  32. Fleurent M, Gingras AC, Sonenberg N, Meloche S. 1997. Angiotensin II stimulates phosphorylation of the translational repressor 4E-binding protein 1 by a mitogenactivated protein kinase-independent mechanism. J. Biol. Chem. 272: 4006–4012.

    Google Scholar 

  33. McCarthy JE, Kollmus H. 1995. Cytoplasmic mRNA-protein interactions in eukaryotic gene expression. Trends Biochem. Sci. 20: 191–197.

    Google Scholar 

  34. Hinnebusch AG. 1994. Translational control of GCN4: an in vivo barometer of initationfactor activity. Trends Biochem. Sci. 19: 409–414.

    CAS  Google Scholar 

  35. Sandberg K. 1994. Structural analysis and regulation of angiotensin II receptors. Trends Endo. Metab. 5: 28–35.

    CAS  Google Scholar 

  36. Wu Z, Aguilera G, Zheng W, Sandberg K. 2000. Adrenalectomy regulates corticotropinreleasing factor receptor expression by regulating mRNA binding proteins (New Orleans, RNA Society 5th Annual Meeting), pp. 708.

    Google Scholar 

  37. Herrick DJ, Ross J. 1994. The half-life of c-myc mRNA in growing and serum-stimulated cells: influence of the coding and 3’ untranslated regions and role of ribosome translocation. Mol. Cell Biol. 14: 2119–2128.

    Google Scholar 

  38. Prokipcak RD, Herrick DJ, Ross J. 1994. Purification and properties of a protein that binds to the C-terminal coding region of human c-myc mRNA. J. Biol. Chem. 269: 92619269.

    Google Scholar 

  39. Gay DA, Sisodia SS, Cleveland DW. 1989. Autoregulatory control of beta-tubulin mRNA stability is linked to translation elongation. Proc. Natl. Acad. Sci. U. S. A. 86: 5763–5767.

    Google Scholar 

  40. Pachter JS, Yen TJ, Cleveland DW. 1987. Autoregulation of tubulin expression is achieved through specific degradation of polysomal tubulin mRNAs. Cell 51: 283–292.

    Article  PubMed  CAS  Google Scholar 

  41. Schiavi SC, Wellington CL, Shyu AB, Chen CY, Greenberg ME, Belasco JG. 1994. Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J. Biol. Chem. 269: 3441–3448.

    Google Scholar 

  42. Shyu AB, Greenberg ME, Belasco JG. 1989. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 3: 60–72.

    Article  PubMed  CAS  Google Scholar 

  43. Lu DL, Menon KM. 1996. 3’ untranslated region-mediated regulation of luteinizing hormone/human chorionic gonadotropin receptor expression. Biochemistry 35: 123471 2353.

    Google Scholar 

  44. Hoffman YM, Peegel H, Sprock MJ, Zhang QY, Menon KM. 1991. Evidence that human chorionic gonadotropin/luteinizing hormone receptor down-regulation involves decreased levels of receptor messenger ribonucleic acid. Endocrinology 128: 388–393.

    Article  PubMed  CAS  Google Scholar 

  45. Lu DL, Peegel H, Mosier SM, Menon KM. 1993. Loss of lutropin/human choriogonadotropin receptor messenger ribonucleic acid during ligand-induced down-regulation occurs post transcriptionally. Endocrinology 132: 235–240.

    Article  PubMed  CAS  Google Scholar 

  46. Kash JC, Menon KMJ. 1998. Identification of a hormonally regulated luteinizing hormone/human chorionic gonadotropin receptor mRNA binding protein. J. Biol. Chem. 273: 10658–10664.

    Google Scholar 

  47. Kash JC, Menon KM. 1999. Sequence-specific binding of a hormonally regulated mRNA binding protein to cytidine-rich sequences in the lutropin receptor open reading frame. Biochemistry 38: 16889–16897.

    Article  PubMed  CAS  Google Scholar 

  48. Wang H, Ascoli M, Segaloff DL. 1991. Multiple luteinizing hormone/chorionic gonadotropin receptor messenger ribonucleic acid transcripts. Endocrinology 129: 133138.

    Google Scholar 

  49. Koo YB, Ji I, Slaughter RG, Ji TH. 1991. Structure of the luteinizing hormone receptor gene and multiple exons of the coding sequence. Endocrinology 128: 2297–2308.

    Article  PubMed  CAS  Google Scholar 

  50. Hu ZZ, Buczko E, Zhuang L, Dufau ML. 1994. Sequence of the 3’-noncoding region of the luteinizing hormone receptor gene and identification of two polyadenylation domains that generate the major mRNA forms. Biochim. Biophys. Acta. 1220: 333–337.

    Google Scholar 

  51. Weiss IM, Liebhaber SA. 1995. Erythroid cell-specific mRNA stability elements in the alpha 2-globin 3’ nontranslated region. Mol. Cell Biol. 15: 2457–2465.

    Google Scholar 

  52. Holcik M, Liebhaber SA. 1997. Four highly stable eukaryotic mRNAs assemble 3’ untranslated region RNA- protein complexes sharing cis and trans components. Proc. Natl. Acad. Sci. U. S.A. 94: 2410–2414.

    Google Scholar 

  53. Kiledjian M, Wang X, Liebhaber SA. 1995. Identification of two KH domain proteins in the alpha-globin mRNP stability complex. EMBO. J. 14: 4357–4364.

    Google Scholar 

  54. Kiledjian M, DeMaria CT, Brewer G, Novick K. 1997. Identification of AUF1 (heterogeneous nuclear ribonucleoprotein D) as a component of the alpha-globin mRNA stability complex. Mol. Cell Biol. 17: 4870–4876.

    Google Scholar 

  55. Czyzyk-Krzeska MF, Dominski, Z., Kole, R. and D.E. Millhorn. 1994. Hypoxia stimulates binding of a cytoplasmic protein to a pyrimidine-rich sequence in the 3’untranslated region of rat tyrosine hydroxylase mRNA. J. Biol. Chem. 269: 9940–9945.

    Google Scholar 

  56. Czyzyk-Krzeska MF, Beresh JE. 1996. Characterization of the hypoxia-inducible protein binding site within the pyrimidine-rich tract in the 3’-untranslated region of the tyrosine hydroxylase mRNA. J. Biol. Chem. 271: 3293–3299.

    Google Scholar 

  57. Paulding WR, Czyzyk-Krzeska MF. 1999. Regulation of tyrosine hydroxylase mRNA stability by protein-binding, pyrimidine-rich sequence in the 3’-untranslated region. J. Biol. Chem. 274: 2532–2538.

    Google Scholar 

  58. Carter BZ, Malter JS. 1991. Regulation of mRNA stability and its relevance to disease. Lab. Invest. 65: 610–621.

    Google Scholar 

  59. Peltz SW, Brewer G, Bernstein P, Hart PA, Ross J. 1991. Regulation of mRNA turnover in eukaryotic cells. Crit. Rev. Eukaryot. Gene Expr. 1: 99–126.

    Google Scholar 

  60. Hargrove JL, Schmidt FH. 1989. The role of mRNA and protein stability in gene expression. Faseb J. 3: 2360–2370.

    PubMed  CAS  Google Scholar 

  61. Hargrove JL. 1993. Microcomputer-assisted kinetic modeling of mammalian gene expression. Faseb J. 7: 1163–1170.

    PubMed  CAS  Google Scholar 

  62. Bernstein P, Ross J. 1989. Poly(A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 14: 373–377.

    Google Scholar 

  63. Bernstein P, Peltz SW, Ross J. 1989. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell Biol. 9: 659–670.

    Google Scholar 

  64. Peltz SW, Jacobson A. 1992. mRNA stability: in trans-it. Curr. Opin. Cell Biol. 4: 979983.

    Google Scholar 

  65. Burd CG, Dreyfuss G. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621.

    Article  PubMed  CAS  Google Scholar 

  66. Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A. 1986. Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. U. S. A. 83: 16701674.

    Google Scholar 

  67. Chen CY, Shyu AB. 1995. AU-rich elements: characterization and importance in mRNA degradation Trends Biochem. Sci. 20: 465–470.

    CAS  Google Scholar 

  68. Pandey NB, Williams AS, Sun JH, Brown VD, Bond U, Marzluff WF. 1994. Point mutations in the stem-loop at the 3’ end of mouse histone mRNA reduce expression by reducing the efficiency of 3’ end formation. Mol. Cell Biol. 14: 1709–1720.

    Google Scholar 

  69. Chen FY, Amara FM, Wright JA. 1993. Mammalian ribonucleotide reductase R1 mRNA stability under normal and phorbol ester stimulating conditions: involvement of a cis-trans interaction at the 3’ untranslated region. EMBO J. 12: 3977–3986.

    PubMed  CAS  Google Scholar 

  70. Amara FM, Chen FY, Wright JA. 1993. A novel transforming growth factor-beta 1 responsive cytoplasmic trans-acting factor binds selectively to the 3’-untranslated region of mammalian ribonucleotide reductase R2 mRNA: role in message stability. Nucleic Acids Res. 21: 4803–4809.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang W, Wagner BJ, Ehrenman K, Schaefer AW, DeMaria CT, Crater D, DeHaven K, Long L, Brewer G. 1993. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell Biol. 13: 7652–7665.

    Google Scholar 

  72. Blaxall BC, Pellett AC, Wu SC, Pende A, Port JD. 2000. Purification and characterization of beta-adrenergic receptor mRNA- binding proteins. J. Biol. Chem. 275: 4290–4297.

    Google Scholar 

  73. Mitchusson KD, Blaxall BC, Pende A, Port JD. 1998. Agonist-mediated destabilization of human betal-adrenergic receptor mRNA: role of the 3’ untranslated translated region. Biochem. Biophys. Res. Commun. 252: 357–362.

    Google Scholar 

  74. Pende A, Tremmel KD, DeMaria CT, Blaxall BC, Minobe WA, Sherman JA, Bisognano JD, Bristow MR, Brewer G, Port J. 1996. Regulation of the mRNA-binding protein AUF 1 by activation of the beta-adrenergic receptor signal transduction pathway. J. Biol. Chem. 271: 8493–8501.

    Google Scholar 

  75. Tholanikunnel BG, Granneman JG, Malbon CC. 1995. The M(r) 35,000 beta-adrenergic receptor mRNA-binding protein binds transcripts of G-protein-linked receptors which undergo agonist-induced destabilization. J. Biol. Chem. 270: 12787–12793.

    Google Scholar 

  76. Nickenig G, Michaelsen F, Muller C, Vogel T, Strehlow K, Bohm M. 2001. Post-transcriptional regulation of the AT1 receptor mRNA. Identification of the mRNA binding motif and functional characterization. Faseb J. 15: 1490–1492.

    Google Scholar 

  77. Ross J. 1996. Control of messenger RNA stability in higher eukaryotes. Trends Genet. 12: 171–175.

    Article  PubMed  CAS  Google Scholar 

  78. Haynes SR. 1999. RNA-protein interaction protocols. In Methods in Molecular Biology. J.M. Walker, ed. Vol 118, Totowa: Humana Press.

    Google Scholar 

  79. Smith CWJ. 1998. RNA:Protein Interactions. In The Practical Approach Series. B.D. Hames, ed., Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sandberg, K., Wu, Z., Ji, H., Hernandez, E., Mulroney, S.E. (2002). Regulation of G-Protein Coupled Receptor Cytosolic mRNA Binding Proteins. In: Sandberg, K., Mulroney, S.E. (eds) RNA Binding Proteins. Endocrine Updates, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6446-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6446-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4935-6

  • Online ISBN: 978-1-4757-6446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics