Advertisement

Theory of Particle Motion in Straight and Distorted Crystals

  • James A. Ellison
Part of the NATO ASI Series book series (NSSB, volume 165)

Abstract

In this paper we discuss three aspects of particle channeling, (1) the validity of the continuum model in a bent crystal, (2) a first principles approach to thermal vibration effects and (3) the relation between phase space diffusion and transverse energy diffusion in the context of electron multiple scattering. The discussions in (2) and (3) are done for straight crystals but presumably apply with minor modification to the bent crystal case.

Keywords

Continuum Model Transverse Energy Liouville Equation Planar Case Thermal Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. W. Saénz, private communication and V. I. Arnold, “Mathematical Methods of Classical Mechanics,” Springer, New York (1974), p. 242.Google Scholar
  2. 2.
    H. S. Dumas and J. A. Ellison, “Particle channeling in crystals and the method of averaging,” Lecture Notes in Physics, 252, edited by A. W. Saénz, W. W. Zachary, and R. Cawley, Springer-Verlag, New York (1986).Google Scholar
  3. 3.
    H. S. Dumas, J. A. Ellison, and A. W. Saénz (to be published).Google Scholar
  4. 4.
    A. Ben Lemlih and J. A. Ellison, Phys. Rev. Lett. 55: 1950 (1986).MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Ben Lemlih, “An Extension of the Method of Averaging to Partial Differential Equations,” Ph.D. dissertation, University of New Mexico (June 1986).Google Scholar
  6. 6.
    A. Ben Lemlih and J. A. Ellison, Annales de la Fondation Louis de Broglie, 11 (4): 285 (1986).Google Scholar
  7. 7.
    A. Ben Lemlih and J. A. Ellison (in preparation).Google Scholar
  8. 8.
    H. S. Dumas, Ph.D. dissertation, University of New Mexico (in preparation).Google Scholar
  9. 9.
    M. Lax, Rev. Mod. Phys. 38:541 (1966)MathSciNetADSMATHCrossRefGoogle Scholar
  10. N. G. Van Kampen, Phys. Reports, 24: 171 (1976).Google Scholar
  11. 10.
    R. Cogburn and R. Hersh, Indiana University Mathematics Journal,22(11):1067 (1973)MathSciNetMATHCrossRefGoogle Scholar
  12. S. N. Ethier and T. G. Kurtz, “Markov Processes: Characterization and Convergence,” John Wiley and Sons, New York (1986).Google Scholar
  13. 11.
    J. Tapia, Ph.D. dissertation, University of New Mexico (in preparation).Google Scholar
  14. 12.
    J. Lindhard and V. Nielsen, Dansk. Vid. Selsk, Mat. Fys. Medd, 38 (9) (1971).Google Scholar
  15. 13.
    J. Lindhard, Dansk. Vid. Selsk., Mat. Fys. Medd., 39 (1) (1974).Google Scholar
  16. 14.
    See for example, R. Wedell, this volume.Google Scholar
  17. 15.
    B. oksendal, “Stochastic Differential Equations,” Springer-Verlag, New York (1985)CrossRefGoogle Scholar
  18. C. W. Gardiner, “Handbook of Stochastic Methods for Physics Chemistry and the Natural Sciences,” Springer-Verlag, New York (1985).Google Scholar
  19. 16.
    J. Nue, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • James A. Ellison
    • 1
  1. 1.Department of MathematicsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations