Advertisement

Crystal Potentials from Channeling Radiation—A First Principles Calculation

  • A. P. Pathak
  • Sashi Satpathy
Part of the NATO ASI Series book series (NSSB, volume 165)

Abstract

We evaluate the potential seen by MeV electrons channeled along the (110) planes in silicon. The exchange and correlation effects among the electrons of the target crystal are included in the local density approximation of density functional theory using the Linear Muffin-Tin Orbital (LMTO) method. The planar potential and the corresponding channeling radiation frequencies calculated by numerically solving the Schrödinger equation with this planar potential agree very well with channeling radiation experiments.

Keywords

Local Density Approximation Root Mean Square Amplitude Channeling Radiation Crystal Potential Planar Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. U. Andersen, E. Bonderup, and R. H. Pantell, Ann. Rev. Nucl. Part. Sci. 33: 453 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    M. A. Kumakhov, Soviet Phy. JETP 45: 781 (1977).Google Scholar
  3. 3.
    M. J. Alguard, R. L. Swent, R. H. Pantell, B. L. Berman, S. D. Bloom, and S. Datz, Phys. Rev. Lett. 42: 1148 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    R. L. Swent, R. H. Pantell, M. J. Alguard, B. L. Berman, S. D. Bloom, and S. Datz, Phys. Rev. Lett. 43: 1723 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    R. H. Pantell and R. L. Swent, Appl. Phys. Lett. 35: 910 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    H. Park, R. H. Pantell, R. L. Swent, J. O. Kephart, B. L. Berman, S. Datz, and R. W. Fearick, J. Appl. Phys. 55:358 (1984); H. Park, J. O. Kephart, R. K. Klein, R. H. Pantell, B. L. Berman, S. Datz, and R. L. Swent, J. Appl. Phys. 57:1661 (1985); A. P. Pathak, Phys. Rev. B 31: 1633 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    P. Hohenberg and W. Kohn, Phys. Rev. 136:B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140: A1133 (1965).CrossRefGoogle Scholar
  8. 8.
    U. von Barth and L. Hedin, J. Phys. C5: 1629 (1972).ADSGoogle Scholar
  9. 9.
    O. K. Andersen, Phys. Rev. B 12: 3060 (1975).Google Scholar
  10. 10.
    H. K. Skriver, The LMTO Method, Springer-Verlag, Berlin (1984).Google Scholar
  11. 11.
    H. Park, R. L. Swent, J. O. Kephart, R. H. Pantell, B. L. Berman, S. Datz, and R. W. Fearick, Phys. Lett. 96A: 45 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • A. P. Pathak
    • 1
  • Sashi Satpathy
    • 2
  1. 1.Max Planck Institute für MetallforschungInstitute für PhysikStuttgart 80Federal Repubilc of Germany
  2. 2.Max Planck Institute für FestkörperforschungStuttgart 80Federal Repubilc of Germany

Personalised recommendations