Advertisement

On the Angular Dependence of Bremsstrahlung and Pair Production in Single Crystals at GeV Energies

  • Allan H. Sørensen
Part of the NATO ASI Series book series (NSSB, volume 165)

Abstract

The electromagnetic radiation emitted in the scattering on target constituents by an electron or a positron penetrating a single crystal separates into a coherent and an incoherent contribution. For instance, recall how bremsstrahlung in the Born limit has two parts, the interference term known as coherent bremsstrahlung (CB), where the recoil momentum absorbed by the crystal equals a reciprocal lattice vector, and the amorphous term which is associated with thermal diffuse scattering. The yield of the latter equals the well-known Bethe-Heitler result for random media except for a slight reduction. Below we shall discuss briefly a few aspects of the angular dependence of the coherent and the incoherent contributions to the bremsstrahlung spectra emitted upon penetration of crystalline media and to the yield of the inverse process of photoproduction of electron-positron pairs. We consider
  1. (i)

    the break-down of the first order Born approach with decreasing angle to crystal axes or planes, and,

     
  2. (ii)

    the angular dependence of the incoherent bremsstrahlung contribution at large photon energies.

     

Keywords

Pair Production Angular Dependence Born Approximation Pair Creation Bremsstrahlung Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. U. Andersen, this volume.Google Scholar
  2. 2.
    A. Belkacem et al., Phys. Rev. Lett. 53:2371 (1984), erratum ibid. 54: 852 (1985).Google Scholar
  3. 3.
    A. H. Sorensen et al., Physica Scripta 32: 149 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    N. Cue and J. Kimball, Nucl. Instrum. Methods B2: 29 (1984).CrossRefGoogle Scholar
  5. 5.
    J. U. Andersen, K. R. Eriksen, E. Laegsgaard, Physica Scripta 24: 588 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    V. N. Baier, V. M. Katkov, V. M. Strakhovenko, Phys. Lett. 104A:231 (1984), ibid. 109A: 179 (1985).Google Scholar
  7. 7.
    V. N. Baier, V. M. Katkov, V. M. Strakhovenko, Nucl. Instrum. Methods B16: 5 (1986).CrossRefGoogle Scholar
  8. 8.
    E. Bonderup, this volume.Google Scholar
  9. 9.
    A. Belkacem et al., this volume.Google Scholar
  10. 10.
    A. I. Akhiezer, V. F. Boldyshev, N. F. Shul’ga, Soy. J. Part. Nucl. 10: 19 (1979).MathSciNetGoogle Scholar
  11. 11.
    J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk., vol. 34, no. 14 (1965).Google Scholar
  12. 12.
    Eg., J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975).Google Scholar
  13. 13.
    I. A. Grishaev, G. D. Kovalenko, B. I. Shramenko, Soy. Phys. JETP 45: 229 (1977).ADSGoogle Scholar
  14. 14.
    J. Bak et al. (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Allan H. Sørensen
    • 1
  1. 1.Institute of PhysicsUniversity of AarhusÅrhus CDenmark

Personalised recommendations