Advertisement

Channeling Radiation Experiments between 10 and 100 MeV

  • B. L. Berman
  • J. O. Kephart
  • R. H. Pantell
  • S. Datz
  • H. Park
  • R. K. Klein
  • B. A. Dahling
Part of the NATO ASI Series book series (NSSB, volume 165)

Abstract

When a relativistic charged particle passes through a single crystal very nearly parallel to a major crystalline plane or axis so that it is channeled in that direction, it undergoes periodic motion in the plane transverse to this direction, and hence it can radiate. Quantum mechanically, this channeling radiation corresponds to a radiative crystalline potential; when the transition occurs between two bound states, a sharp spectral line is emitted. In the forward direction in the laboratory frame of reference, the radiation is transformed upwards in energy. In part, this is because of the relativistic velocity of the charged particle that leads to a factor of γ = E/mc 2, where E is the total energy of the particle and m is its rest mass (this can also be thought of as a deepening of the crystalline potential well by a factor of γ). The Doppler shift gives rise to an additional factor of 2γ. This combined factor of 2γ2 (equal to 2 × 104 for γ = 100, corresponding to electrons or positrons of about 50 MeV, for example) brings channeling radiation up into the interesting keV-to-MeV energy region. This, in turn, makes it relatively easy to observe using the methods of x- and γ-ray spectroscopy, and relatively easy to tune by varying the incident particle energy. The same relativistic transformation folds the radiation forward in the laboratory into a narrow cone having a characteristic half-angle of 1/γ (equal to 10 mrad for the above example), and thus makes it very intense within that solid angle. For the case of planar channeling, the radiation is linearly polarized.

Keywords

Radiation Spectrum Photon Detector Plastic Scintillator Natural Diamond Synthetic Diamond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Walker, B. L. Berman, R. C. Der, T. M. Kavanagh, and J. M. Khan, Phys. Rev. Lett. 25:5 (1970). This experiment was essentially duplicated, with 1-GeV poistrons and electrons, by V. L. Morikhovskii, G. D. Kovalenko, I. A. Grishaev, A. N. Fisun, V. I. Kasilov, B. I. Shramenko, and A. N. Krinitsyn, Pis’ma Zh. Eksp. Teor. Fiz. 16:162 (1972) [English translation: JETP Lett. 16:112 (1972)]. They too, observed channeling radiation, but this fact has not been recognized until now.Google Scholar
  2. 2.
    R. L. Walker, B. L. Berman, and S. D. Bloom, Phys. Rev. A 11:736 (1975). Low-energy enhancement like that seen in this experiment also has been seen with 800-MeV electrons by S. A. Vorobiev, B. N. Kalinin, V. V. Kaplin, and A. P. Potylitsin, Pis’ma Zh. Tekh. Fiz. 4:1340 (1978) [English translation: Soy. Phys.-Tech. Phys. Lett. 4:539 (1978)], and with 1.2-GeV positrons by B. I. Shramenko, V. I. Vit’ko, and I. A. Grishaev, Pis’ma Zh. Tekh. Fiz. 4:1423 (1978) [English translation: Soy. Phys.-Tech. Phys. Lett. 4:576 (1978)].Google Scholar
  3. 3.
    T. F. Godlove and M. E. Toms, private communication (1969); U.S. Naval Research Laboratory, Nuclear Physics Division, Annual Report (1969), p. 96.Google Scholar
  4. 4.
    R. W. Terhune and R. H. Pantell, Appl. Phys. Lett. 30: 265 (1977);ADSCrossRefGoogle Scholar
  5. R. H. Pantell, private communication (1975).Google Scholar
  6. 5.
    B. N. Kalinin, V. V. Kaplin, A. P. Potylitsin, and S. A. Vorobiev, Phys. Lett. 70A: 447 (1979);CrossRefGoogle Scholar
  7. S. A. Vorobiev, B. N. Kalinin, V. V. Kaplin, and A. P. Potylitsin, Izv. Vyssh. Uchebn. Zaved.,Fiz. No. 11, 117 (1978) [English translation: Soy. Phys. J. 21:1483 (1979)].Google Scholar
  8. 6.
    M. J. Alguard, R. L. Swent, R. H. Pantell, B. L. Berman, S. D. Bloom, and S. Datz, IEEE Trans. Nucl. Sci. NS-26: 3865 (1979).Google Scholar
  9. 7.
    M. J. Alguard, R. L. Swent, R. H. Pantell, B. L. Berman, S. D. Bloom, and S. Datz, Phys. Rev. Lett. 42: 1148 (1979).ADSCrossRefGoogle Scholar
  10. 8.
    R. L. Swent, R. H. Pantell, M. J. Alguard, B. L. Berman, S. D. Bloom, and S. Datz, Phys. Rev. Lett. 43: 1723 (1979).ADSCrossRefGoogle Scholar
  11. 9.
    A. O. Agan’yants, Y. A. Vartanov, G. A. Vartapetyan, M. A. Kumakhov, Kh. Trikalinos, and V. Ya. Yaralov, Pis’ma Zh. Eksp. Teor. Fiz. 29:554 (1979) [English translation: JETP Lett. 29:505 (1979)].Google Scholar
  12. 10.
    I. I. Miroschnichenko, J. J. Murray, R. O. Avakyan, and T. Kh. Figut, Pis’ma Zh. Eksp. Teor. Fiz. 29:786 (1979) [English translation: JETP Lett. 29:722 (1979)], in which the authors make the erroneous claim of the first observation of the radiation of channeled relativistic positrons. Unfortunately, this error has been propagated in several subsequent review papers.Google Scholar
  13. 11.
    B. L. Berman and S. Datz, in: “Coherent Radiation Sources,” A. W. Sâenz and H. Überall, eds., Springer-Verlag, Berlin and Heidelberg, 1985, p. 165.Google Scholar
  14. 12.
    B. L. Berman, B. A. Dahling, S. Datz, J. O. Kephart, R. K. Klein, R. H. Pantell, and H. Park, Nucl. Instr. Meth. B10 /11: 611 (1985).Google Scholar
  15. 13.
    B. L. Berman, Energy Tech. Rev. 85–3: 12 (1985).Google Scholar
  16. 14.
    S. Datz, B. L. Berman, B. A. Dahling, M. V. Hynes, H. Park, J. O. Kephart, R. K. Klein, and R. H. Pantell, Nucl. Instr. Meth. B13: 19 (1986).CrossRefGoogle Scholar
  17. 15.
    B. L. Berman, S. D. Bloom, S. Datz, M. J. Alguard, R. L. Swent, and R. H. Pantell, Phys. Lett. 82A:459 (1981).Google Scholar
  18. 16.
    H. Park, J. O. Kephart, R. K. Klein, R. H.Pantell, B. L. Berman, and S. Datz, to be published.Google Scholar
  19. 17.
    J. U. Anderson, K. R. Eriksen, and E. Laegsgaard, Phys. Scr. 24: 588 (1981).ADSCrossRefGoogle Scholar
  20. 18.
    R. K. Klein, J. O. Kephart, R. H. Pantell, H. Park, B. L. Berman, R. L. Swept, S. Datz, and R. W. Fearick, Phys. Rev. B 31: 68 (1985).ADSCrossRefGoogle Scholar
  21. 19.
    R. H. Pantell, J. O. Kephart, R. K. Klein, H. Park, B. L. Berman, and S. Datz, this volume.Google Scholar
  22. 20.
    J. O. Kephart, R. K. Klein, R. H. Pantell, H. Park, S. Datz, M. J. Alguard, R. L. Swent, and B. L. Berman, Bull. Am. Phys. Soc. 30: 374 (1985).Google Scholar
  23. 21.
    M. Gouanère, D. Sillou, M. Spighel, N. Cue, M. J. Gaillard, R. G. Kirsch, J.-C. Poizat, J. Remillieux, B. L. Berman, P. Catillon, L. Roussel, and G. M. Temmer, Nucl. Instr. Meth. 194: 225 (1982)CrossRefGoogle Scholar
  24. M. Gouanère, D. Sillou, M. Spighel, N. Cue, M. J. Gaillard, R. G. Kirsch, J.-C. Poizat, J. Remillieux, B. L. Berman, P. Catillon, L. Roussel, and G. M. Temmer, Proc. Int. Conf. Atomic Collisions in Solids, Bad Iburg, 1983, p. 8.Google Scholar
  25. 22.
    S. Datz, R. W. Fearick, H. Park, R. H. Pantell, R. L. Swent, J. O. Kephart, R. K. Klein, and B. L. Berman, Phys. Lett 96A: 314 (1983).CrossRefGoogle Scholar
  26. 23.
    R. K. Klein, Ph.D. thesis, Stanford University (1985); R. K. Klein et al., to be published.Google Scholar
  27. 24.
    S. Datz, R. W. Fearick, H. Park, R. H. Pantell, R. L. Swent, J. O. Kephart, and B. L. Berman, Nucl. Instr. Meth. B2: 74 (1984).CrossRefGoogle Scholar
  28. 25.
    H. Park, R. H. Pantell, R. L. Swent, J. O. Kephart, B. L. Berman, S Datz, and R. W. Fearick, J. Appl. Phys. 55: 358 (1984).ADSCrossRefGoogle Scholar
  29. 26.
    H. Park, J. O. Kephart, R. K. Klein, R. H. Pantell, B. L. Berman, S. Datz, and R. L. Swent, J. Appl. Phys. 57: 1661 (1985).ADSCrossRefGoogle Scholar
  30. 27.
    H.Park, J. O. Kephart, R. K. Klein, R. H. Pantell, B. L. Berman, B. A. Dahling, and S. Datz, to be published.Google Scholar
  31. 28.
    B. L. Berman, S. Datz, R. W. Fearick, J. O. Kephart, R. H. Pantell, H. Park, and R. L. Swent, Phys. Rev. Lett. 49: 474 (1982).ADSCrossRefGoogle Scholar
  32. 29.
    R. L. Swent, R. H. Pantell, H. Park, J. O. Kephart, R. K. Klein, S. Datz, R. W. Fearick, and B. L. Berman, Phys. Rev. B 29: 52 (1984).ADSCrossRefGoogle Scholar
  33. 30.
    B. L. Berman, S. Datz, R. W. Fearick, R. L. Swent, R. H. Pantell, H. Park, J. O. Kephart, and R. K. Klein, Nucl. Instr. Meth. B2: 90 (1984).CrossRefGoogle Scholar
  34. 31.
    H. Park, R. H. Pantell, R. K. Klein, J. O. Kephart, S. Datz, and B. L. Berman, to be published.Google Scholar
  35. 32.
    B. L. Berman, S. Datz, J. O. Kephart, R. K. Klein, R. H. Pantell, H. Park, R. L. Swent, M. J. Alguard, and M. V. Hynes, Bull. Am. Phys. Soc. 28:1322 (1983) and 30: 373 (1985).Google Scholar
  36. 33.
    International Tables for X-ray Crystallography,“ N.F.M. Henry and K. Lonsdale, eds., Kynoch, Birmingham, 1959.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • B. L. Berman
    • 1
  • J. O. Kephart
    • 2
  • R. H. Pantell
    • 2
  • S. Datz
    • 3
  • H. Park
    • 4
  • R. K. Klein
    • 5
  • B. A. Dahling
    • 6
  1. 1.Department of PhysicsGeorge Washington UniversityUSA
  2. 2.Department of Electrical EngineeringStanford UniversityStanfordUSA
  3. 3.Physics DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Bell LaboratoriesAT&TAllentownUSA
  5. 5.Advanced Micro Devices, Inc.SunnyvaleUSA
  6. 6.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations