Skip to main content

Plasticity Mechanisms Underlying mGluR-Induced Epileptogenesis

  • Chapter
Recent Advances in Epilepsy Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 548))

Abstract

Transient application of group I metabotropic glutamate receptor (mGluR) agonists to hippocampal slices produces ictal-like discharges that persist for hours after the removal of the agonist. This effect of group I mGluR stimulation—converting a ‘normal’ hippocampal slice into an ‘epileptic-like’ one—may represent a form of epileptogenesis. Because this epileptogenic process can be induced in vitro and it occurs within hours, it has been possible to examine the cellular and transduction processes underlying the generation and long-term maintenance of ictal-like bursts. ImctuR(v) a voltage-dependent depolarizing current activated by group I mGluR agonists, appears to play an important role in the expression of the ictal-like bursts. Long-term activation of ImG1uR(v) following mGluR stimulation is a possible plastic change that enables the long-term maintenance of ictal discharges. Induction of ImGltaz(v) may represent a cellular event underlying the mGluR-induced epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev 1999; 29: 83–120.

    Article  PubMed  CAS  Google Scholar 

  2. Attwell PJ, Singh KN, Jane DE et al. Anticonvulsant and glutamate release-inhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV). Brain Res 1998; 805: 138–143.

    Article  PubMed  CAS  Google Scholar 

  3. Behr J, Heinemann U, Mody I. Kindling induces transient NMDA receptor-mediated facilitation of high-frequency input in the rat dentate gyrus. J Neurophysiol 2001; 85: 2195–2202.

    PubMed  CAS  Google Scholar 

  4. Camon L, Vives P, De Vera N et al. Seizures and neuronal damages induced in the rat by activation of group I metabotropic glutamate receptors with their selective agonist 3,5-dihydroxyphenyglycine. J Neuroscie Res 1998; 51: 339–348.

    Article  CAS  Google Scholar 

  5. Chapman AG, Nanan K, Meldrum BS. Anticonvulsant activity of the metabotropic glutamate group I antagonists selective for mGIuR5 receptor: 2-methyl-6-(phenylethynyle)-pyridine (MPEP), and (E)-6-methyl-2-styryl-pyridine (SIB 1983). Neuropharmacology 2000; 39: 1567–1574.

    Article  PubMed  CAS  Google Scholar 

  6. Charpak S, Gähwiler BH, Do KQ et al. Potassium conductances in hippocampal neurons blocked by excitatory amino acid transmitters. Nature 1990; 347: 765–767.

    Article  PubMed  CAS  Google Scholar 

  7. Chuang SC, Bianchi R, Kim D et al. Group I metabotropic glutamate receptors elicit epileptiform discharges in the hippocampus through PLC 11 signaling. J Neurosci 2001; 21: 6387–6394.

    PubMed  CAS  Google Scholar 

  8. Chuang SC, Bianchi R, Wong RKS. Group I mGluR activation turns on a voltage-dependent inward current in hippocampal pyramidal cells. J Neurophysiol 2000; 83: 2844–2853.

    PubMed  CAS  Google Scholar 

  9. Chuang SC, Zhao W, Young SJ et al. Activation of group I mGluRs elicits different responses in murine CAl and CA3 pyramidal cells. J Physiol 2002; 541: 113–121.

    Article  PubMed  CAS  Google Scholar 

  10. Congar P, Leinekugel X, Ben-ari Y et al. A long-lasting calcium-activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CAl pyramidal neurons. J Neurosci 1997; 17: 5366–5379.

    PubMed  CAS  Google Scholar 

  11. Conn PJ, Pin J-P. Pharmacology and functions of metabotropic glutamate receptors. Ann Rev Pharmacol Toxicol 1997; 37: 205–237.

    Article  CAS  Google Scholar 

  12. Gasparini F, Bruno V, Battaglia G et al. (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther 1999; 289: 1678–1687.

    PubMed  CAS  Google Scholar 

  13. Hayashi Y, Sekiyama N, Nakanishi S et al. Analysis of agonist and antagonist activities of phenylglycine derivatives for different cloned metabotropic glutamate receptor subtypes. J Neurosci 1994; 14: 3370–3377.

    PubMed  CAS  Google Scholar 

  14. Heuss C, Scanziani M, Gahwiler BH et al. G-protein independent signaling mediated by metabotropic glutamate receptors. Nature Neurosci 1999; 2: 1070–1077.

    Article  PubMed  CAS  Google Scholar 

  15. Merlin LR. Group I mGluR-mediated silent induction of long-lasting epileptiform discharges. J Neurophysiol 1999; 82: 1078–1081.

    PubMed  CAS  Google Scholar 

  16. Merlin LR, Bergold PJ, Wong RKS. Requirement of protein synthesis for group I mGluR-mediated induction of epileptiform discharges. J Neurophysiol 1998; 80: 989–993.

    PubMed  CAS  Google Scholar 

  17. Merlin LR, Wong RKS. Role of Group I metabotropic glutamate receptors in the patterning of epileptiform activities in vitro. J Neurophysiol 1997; 78: 539–544.

    PubMed  CAS  Google Scholar 

  18. Miles R, Wong RKS. Single neurones can initiate synchronized population discharge in the hippocampus. Nature 1983; 306: 371–373.

    Article  PubMed  CAS  Google Scholar 

  19. Numann RE, Wadman WJ, Wong RKS. Outward currents of single hippocampal cells obtained from the adult guinea-pig. J Physiol 1987; 393: 331–353.

    PubMed  CAS  Google Scholar 

  20. Otani S, Daniel H, Takita M et al. Long-term depression induced by postsynaptic group II metabotropic glutamate receptors linked to phospholipase C and intracellular calcium rises in rat prefrontal cortex. J Neurosci 2002; 22: 3434–3444.

    PubMed  CAS  Google Scholar 

  21. Sayin U, Rutecki PA, Sutula T. NMDA-dependent currents in granule cells of the dentate gyrus contribute to induction but not permanence of kindling. J Neurophysiol 1999; 81: 564–574.

    PubMed  CAS  Google Scholar 

  22. Shrestha A, Staley KJ. Induction of LTD by activation of group III metabotropic glutamate receptor in CA3. Society for Neuroscience Abstract 2001; 27: 388. 8. (Abstract).

    Google Scholar 

  23. Taylor GW, Merlin LR, Wong RKS. Synchronized oscillations in hippocampal CA3 neurons induced by metabotropic glutamate receptor activation. J Neurosci 1995; 15: 8039–8052.

    PubMed  CAS  Google Scholar 

  24. Thompson SM, Wong RKS. Development of calcium current subtypes in isolated rat hippocampal pyramidal cells. J Physiol 1991; 439: 671–689.

    PubMed  CAS  Google Scholar 

  25. Traub RD, Wong RKS. Cellular mechanism of neuronal synchronization in epilepsy. Science 1982; 216, 745–747.

    Article  PubMed  CAS  Google Scholar 

  26. Wong RKS, Bianchi R, Taylor GW et al. Role of metabotropic glutamate receptors in epilepsy. Adv Neurol 1999; 79: 685–689.

    PubMed  CAS  Google Scholar 

  27. Wong RKS, Prince DA. Afterpotential generation in hippocampal pyramidal cells. J Neurophysiol 1981; 45: 86–97.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wong, R.K.S., Chuang, SC., Bianchi, R. (2004). Plasticity Mechanisms Underlying mGluR-Induced Epileptogenesis. In: Binder, D.K., Scharfman, H.E. (eds) Recent Advances in Epilepsy Research. Advances in Experimental Medicine and Biology, vol 548. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6376-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6376-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3418-5

  • Online ISBN: 978-1-4757-6376-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics