Advertisement

Fluid structure interaction

  • K. Komatsu

Abstract

There are many kinds of fluid-structure interaction problems1,2,3. In this chapter only a few non-flow field problems, mainly fluid-shell dynamic interaction and fluid-solid impact will be discussed. The fluid-shell systems are used as models for sloshing and POGO (structure-propulsion coupling oscillation) in liquid rockets, floating lids Of oil tanks, large tanks containing fluid, nuclear containment vessels, and head injury studies in biomechanics. The study of structure-water impact finds applications in the problems associated with water landings of re-entry vehicles, water entry of torpedoes, and slamming of ships in heavy seas.

Keywords

Boundary Element Boundary Element Method Fluid Structure Interaction Hemispherical Shell Circumferential Wave NuMBER 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Naudascher, E. (Ed.), Flow-Induced Structural librations, IUTAM-IAHR Symposium, Karlsruhe, 1972, Springer-Verlag (1974)Google Scholar
  2. 2.
    Belytschko, T. and Geers, T. L. (Ed.), Computational Methods for Fluid-Structure Interaction Problems, ASME, AMD-Vol. 26 (1978)Google Scholar
  3. 3.
    Fluid structure interaction’, Int. J. Numerical Methods in Engng,13 Special Issue No. 1 (1978)Google Scholar
  4. 4.
    Luk, C. H., ‘Finite element analysis for liquid sloshing problems’, ASRL, TR-144–3, MIT (1969)Google Scholar
  5. 5.
    Ping Tong, ‘Liquid sloshing in an elastic container’, PhD Thesis, AFOSR 66–0943, Cal. Tech. (1966)Google Scholar
  6. 6.
    MacNeal, R. H. (Ed.), ‘Interaction of structures and fluids’, Chap. 16 in The Nastran Theoretical Manual-Addendum, NASA SP-221 (1972)Google Scholar
  7. 7.
    Hsiung, H., ‘Dynamic analysis of hydroelastic systems using the finite element method’, PhD Thesis, University of Southern California (1973)Google Scholar
  8. 8.
    Pinson, L. D. and Brown, C. G., ‘A finite element method for nonaxisymmetric vibrations of pressurized shells of revolution partially filled with liquid’, AIAA Paper No. 73–339 (1973)Google Scholar
  9. 9.
    Coppolino, R. N., ‘A numerically efficient finite element hydroelastic analysis’, NASA CR-2662 (1974)Google Scholar
  10. 10.
    Berger, H., Boujot, L. and Ohayon, R., ‘On a spectral problem in vibration mechanics: Computation of elastic tanks partially filled with liquids’, J. Math. Anal. Applic., 51, pp. 272–298 (1975)CrossRefGoogle Scholar
  11. 11.
    Kiefling, L. and Feng, G. C., ‘Fluid-structure finite element vibration analysis’, AIAA J., 14, pp. 199–203 (1976)Google Scholar
  12. 12.
    Morand, H. and Ohayon, R., ‘Substructure vibrational analysis of compressible hydroelastic vibration problems: Finite element results’, ONERA T.P. No. 1978–72 (1978)Google Scholar
  13. 13.
    Guyan, R. J., Ujihara, B. H. and Welch, P. W., ‘Hydroelastic of axisymmetric systems by a finite element method’, AFFDL TR-68–150, Proc. 2nd Conf Matrix Methods in Structural Mechanics, Wright Patterson Air Force Base, pp. 1165–1203 (1968)Google Scholar
  14. 14.
    Ujihara, B. H. and Guyan, R. J., ‘Hydroelastic properties of a full scale S-II LOX tank’, AIAA Paper No. 72–173 (1972)Google Scholar
  15. 15.
    Khabbaz, G. R., ‘Dynamic behavior of liquids in elastic tanks’, AI AA J, Vol. 9, pp. 1985–1990 (1971)CrossRefGoogle Scholar
  16. 16.
    Komatsu, K., ‘Hydroelastic analysis using axisymmetric fluid finite elements’, Technical Report of National Aerospace Laboratory, Japan, TR-478 (1976)Google Scholar
  17. 17.
    Krieg, R., ‘Coupled problems in transient fluid and structural dynamics in nuclear engineering, Pt. 1’, Appl. Math. Modelling, 2 (1978)Google Scholar
  18. 18.
    Walker, S., ‘Boundary elements in fluid-structure interaction problems rotational shells’, Appl. Math. Modelling, 4, pp. 345–350 (1980)CrossRefGoogle Scholar
  19. 19.
    Tai, C. L. and Uchiyama, S., ‘A new approach to the interaction problems of fluid-filled elastic membrane shells’, Proc. 38th Symposium on Shock, Vibration and Associated Environments, St. Louis, pp. 212–226 (1968)Google Scholar
  20. 20.
    Okada, N., Sakai, T. and Sakoda, H., ‘Dynamic analysis of large liquid tanks undergoing earthquakes by the finite element method’, Kawasaki Giho, No. 61 (1976)Google Scholar
  21. 21.
    Housner, J. M. and Herr, R. W., ‘Vibrations of incompressible liquid-elastic tank combinations using a series representation of the liquid’, in Computational Methods for Fluid-Structure Interaction Problems, ASME, AMD-Vol. 26, pp. 49–64 (1978)Google Scholar
  22. 22.
    Brebbia, C. A. and Butterfield, R., The formal equivalence of the direct and indirect boundary element methods’, Appl. Math. Modelling, 2, pp. 132–134 (1978)CrossRefGoogle Scholar
  23. 23.
    Moiseyev, N. N. and Rumyantsev, V. V., Dynamic Stability of Bodies Containing Fluid, Springer-Verlag (1968) Google Scholar
  24. 24.
    Zienkiewicz, O. C., Kelley, D. W. and Bettess, P., ‘The coupling of the finite element method and boundary solution procedures’, Int. J. Numerical Methods in Engng, 11, pp. 355–375 (1977)CrossRefGoogle Scholar
  25. 25.
    Brebbia, C. A. and Georgiou, P., ‘Combination of boundary and finite elements in elastostatics’, Appl. Math. Modelling, 3, pp. 212–220 (1979)CrossRefGoogle Scholar
  26. 26.
    Hess, J. L. and Smith, A. M. O., ‘Calculation of potential flow about arbitrary bodies’, in Progress in Aeronautical Sciences, Vol. 8, Pergamon Press, London (1967)Google Scholar
  27. 27.
    DeRuntz, J. A. and Geers, T. L., ‘Added mass computation by the boundary integral method’, Int. J. Numerical Methods in Engng, 12, pp. 531–550 (1978)CrossRefGoogle Scholar
  28. 28.
    Schenck, H. A., ‘Improved integral formulation for acoustic radiation problems’, J. Acoustical Soc. Am., 44, pp. 41–58 (1968)CrossRefGoogle Scholar
  29. 29.
    Wilton, D. T., ‘Acoustic radiation and scattering from elastic structures’, Int. J. Numerical Methods in Engng, 13, pp. 123–138 (1978)CrossRefGoogle Scholar
  30. 30.
    Abramson, H. N. (Ed.), ‘The dynamic behavior of liquids in moving containers’, NASA SP-106 (1966)Google Scholar
  31. 31.
    Chung, T. J. and Rush, R. H., ‘Dynamically coupled motion of a surface-fluid-shell system’, J. Appl. Mechanics, 48; pp. 507–508 (1976)CrossRefGoogle Scholar
  32. 32.
    Komatsu, K., ‘Vibration analysis of spherical shells partially filled with a liquid’, Trans. Japan Soc. Aeronautical and Space Science, 22, pp. 70–79 (1979)Google Scholar
  33. 33.
    Navaratna, D. R., ‘Natural vibrations of shells of revolution using ring finite elements’, Int. J. Mechanical Science, 9, pp. 2056–2060 (1966)Google Scholar
  34. 34.
    Adelman, H. M., Catherines, D. S. and Walton Jr., W. C., ‘A method for computation of vibration modes and frequencies of orthotropic thin shells of revolution having general meridional curvature’, NASA TN D-4792 (1969)Google Scholar
  35. 35.
    Komatsu, K. and Matsushima, M., ‘Some experiments on the vibration of hemispherical shells partially filled with a liquid’, J. Sound and Vibration, 64, pp. 35–44 (1979)CrossRefGoogle Scholar
  36. 36.
    Geers, T. L., Loden, W. A. and Yee, H. C., ‘Finite element, boundary integral analysis of fluid-solid impact’, LMSC-D563591, Lockheed Palo Alto Research Laboratory, Palo Alto, California (1977)Google Scholar
  37. 37.
    Kettleborough, C. F., ‘Hydrodynamic water impact final report’, NASA CR-137370 (1972)Google Scholar
  38. 38.
    Herting, D. N., ‘A coupled fluid-structure dynamic analysis for water impact loads’, AIAA Paper No. 75–752 (1975)Google Scholar
  39. 39.
    Sliter, G., ‘Preliminary data from DSI water impact tests (RP817)’, EPRI Memorandum, April 29, Electric Power Research Institute, Palo Alto California (1977)Google Scholar
  40. 40.
    Wilkinson, J. P. D., Cappelli, A. P. C. and Salzman, R. N., ‘Hydroelastic interaction of shells of revolution during water impact’, AIAA J, 6, pp. 792–797 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • K. Komatsu

There are no affiliations available

Personalised recommendations