Wave propagation phenomena

  • Paul H. L. Groenenboom


The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. For the design of antennas the interaction with electromagnetic waves has to be known. For earthquake analysis the elastodynamic wave propagation is essential. Knowledge of surface waves of liquids is necessary for the design of harbours and dams, and for the design of pressure vessels and piping networks in several branches of industry pressure transient analyses are required. What these wave propagation phenomena have in common is that they describe the motion of a disturbance with a definite speed (velocity of light, velocity of sound). The specific properties of these waves are reflection,diffraction and interference,-well known phenomena in physical optics.


Boundary Element Fundamental Solution Boundary Element Method Pressure Wave Nodal Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brebbia, C. A., The Boundary Element Met hod for Engineers, Pentech Press, London (1980)Google Scholar
  2. 2.
    Hess, J. L. and Smith, A. M. O., in Progress in Aeronautical Sciences, Vol. 8, D. Küchemann et al. (Ed.), Pergamon Press, Oxford (1967)Google Scholar
  3. Paris, F., Martin, A. and Alarcón, E., ‘Potential Theory’, in Progress in Boundary Element Methods, Vol. 1, C. A. Brebbia (Ed.), Pentech Press, London (1981)Google Scholar
  4. Brebbia, C. A. and Walker, S., Boundary Element Techniques in Engineering, NewnesButterworth (1979)Google Scholar
  5. 3.
    Wrobel, L. C. and Brebbia, C. A., in Numerical Methods in Thermal Problems, R. W. Lewis and K. Morgan (Eds.), Pineridge Press (1979)Google Scholar
  6. Brebbia, C. A. and Wrobel, L. C., in Recent Advances in Numerical Methods in Fluids, C. Taylor and K. Morgan (Eds.), Pineridge Press, Swansea (1979)Google Scholar
  7. 4.
    Shaw, R. P., ‘Bounday Integral Equation Methods Applied to Wave Problems’, Developments in Boundary Element Methods 1, P. K. Banerjee and R. Butterfield (Eds.), Applied Science Publishers Ltd., London (1979)Google Scholar
  8. 5.
    Walker, S., in Proceedings of the Second International Seminar on Recent Advances in Boundary Element Methods, C. A. Brebbia (Ed.), Southampton, (1980)Google Scholar
  9. 6.
    Stratton, J. A., Electromagnetic Theory, McGraw Hill Book Co., New York (1941)Google Scholar
  10. 7.
    See for example: Transactions of the 6th International Conference on SMIRT,Paris, Vol. BGoogle Scholar
  11. Thermal and Fluid/Structure Dynamics Analysis, North-Holland Publishing Company, Amsterdam (1981)Google Scholar
  12. 8.
    Chorin, A. J. and Marsden, J. E., A Mathematical Introduction to Fluid Mechanics, Springer Verlag, New York (1979)CrossRefGoogle Scholar
  13. 9.
    Connor, J. J. and Brebbia, C. A., Finite Element Techniques for Fluid Flow, Newnes-Butterworths, London (1977)Google Scholar
  14. 10.
    Morse, P. M. and Feshbach, H., Methods of Theoretical Physics, McGraw-Hill, New York (1953)Google Scholar
  15. 11.
    Kirchhoff, G., Berliner Sitzungsberichten (1882), p. 641; Annalen der Physik, 18, p. 663 (1883)CrossRefGoogle Scholar
  16. 12.
    B. B. Baker and E. T. Copson, The Mathematical Theory of Huygens’ Principle, Oxford University Press, Oxford (1953)Google Scholar
  17. 13.
    Geers, T. L., in Computational Methods for Transient Response Analysis,T. Belytschko and T. J. R. Hughes (Eds), North-Holland Publishing Co., Amsterdam, to be publishedGoogle Scholar
  18. 14.
    Mustoe, G. G. W. and Mathews, I. C., ‘Direct Boundary Integral Methods, Point Collocation and Variational Procedures’, Third Int. Seminar on Boundary Element Methods, Irvine (Ca.) (1981)Google Scholar
  19. 15.
    Groenenboom, P. H. L., ‘The Application of Boundary Elements to Steady and UnsteadyGoogle Scholar
  20. Potential Fluid Flow Problems in Two and Three Dimensions’, Third Int. Seminar on Boundary Element Methods,Irvine (Ca.), C. A. Brebbia (Ed.), Springer-Verlag, Berlin (1981), also Applied Mathematical Modelling,6 p. 35 (1982)Google Scholar
  21. 16.
    Mansur, W. J. and Brebbia, C. A., ‘Formulation of the Boundary Element Method for Transient Problems Governed by the Scalar Wave Equation’, to be published in Applied Mathematical Modelling Google Scholar
  22. 17.
    Brebbia, C. A., in New Developments in Boundary Element Methods, C. A. Brebbia (Ed.), C.M.L. Publications, pp. 3–33 (1980)Google Scholar
  23. Walker, S., ‘Fundamental Solutions’, Progress in Boundary Element Methods, Vol. 1, Pentech Press, London (1981)Google Scholar
  24. Stakgold, I., Green’s Functions and Boundary Value Problems, John Wiley and Sons, New York (1979)Google Scholar
  25. 18.
    Streeter, V. L. and Wylie, E. B., Hydraulic Transients, McGraw-Hill Book Co., New York (1967)Google Scholar
  26. Weisman, J. and Tentner, A., ‘Application of the Method of Characteristics to Solution of Nuclear Engineering Problems’, Nucl. Sci. and Engrg., 78, p. 1 (1981)Google Scholar
  27. 19.
    Kellner, A., ‘KOMPAKT — ein schnelles Verfahren zur Beschreibung 1-dimensionaler kompressibler Medien’, Atomwirtschaft, p. 443 (1980)Google Scholar
  28. 20.
    Bishoff, H., ‘An Integral Equation Method to Solve Three-dimensional Confined Flow to Drainage Systems’, Third Int. Seminar on Boundary Element Methods, C. A. Brebbia ( Ed. ), Irvine (Ca. ) (1981)Google Scholar
  29. 21.
    Felippa, C. A., ‘A Family of Early-Time Approximations for Fluid-Structure Interaction’, J. Appl. Mech., 47, p. 703 (1980)CrossRefGoogle Scholar
  30. 22.
    T. L. Geers, ‘Transient Response Analysis of Submerged Structures’, Finite Element Analysis of Transient Nonlinear Structural Behavior, T. Belytschko and T. L. Geers (Eds.), AMD-14, ASME, New York, pp. 59–84 (1975)Google Scholar
  31. 23.
    Gerdes, W. and Martense, E., ‘Retardierte Potentialen and Darstellung von Raumzeitfunktionen mit unbeschränkten Definitionsbereich’, Archive for Rational Mechanics and Analysis, 58, pp. 31–34 (1975)CrossRefGoogle Scholar
  32. 24.
    Cemal Eringen, A. and Suhubi, Erdogan S., Elastodynamics, Vol. II, Linear Theory, Academic Press, New York (1975)Google Scholar
  33. 25.
    Geers, T. L., ‘Doubly Asymptotic Approximations for Transient Motions of Submerged Structures’, J. Account. Soc. Am., 64, p. 1500 (1978)CrossRefGoogle Scholar
  34. Underwoord, Ph. and Geers, T. L., ‘Doubly Asymptotic, Boundary Element Analysis of Dynamic Soil-Structure Interaction’, Int. J. Solids Structures, 17, pp. 687–697 (1981)CrossRefGoogle Scholar
  35. 26.
    Felippa, C. A., in Innovative Numerical Analysis for the Engineering Sciences, R. Shaw et al. ( Eds. ), The University Press of Virginia (1980)Google Scholar
  36. 27.
    Lamb, H., Hydrodynamics, Dover, New York (1932)Google Scholar
  37. De Runtz, J. A. and Geers, T. L., ‘Added Mass Computation by the Boundary Element Method’, Int. J. Num. Meth. in Engrg.,12 pp. 531–549 (1978)Google Scholar
  38. Delhommeau, G., Peseux, B. and Quevat, J. P., in Numerical Methods for Coupled Problems, E. Hinton, P. Bettes and R. W. Lewis (Eds.), Pineridge Press, Swansea, p. 346 (1981) Sayhi, M. N. and Ousset, Y., ibid., p. 255Google Scholar
  39. 29.
    Patterson, C. and Scheikh, M. A., Non-conforming Boundary Elements for Stress Analysis’, Proc. Third. Int. Seminar on Boundary Element Methods, Irvine (Ca.), C. A. Brebbia (Ed.), Springer-Verlag, Berlin (1981)Google Scholar
  40. 30.
    Danson, D., Computational Mechanics Centre Report (1981)Google Scholar
  41. 31.
    Lachat, J. A. and Watson, J. O., ‘Effective Numerical Treatment of Boundary Integral Equations’ Int. J. Num. Methods in Engrg. 10 pp. 991–1005 (1976) Google Scholar
  42. 32.
    Poggio, A. J. and Miller, E. K., ‘Integral Equation Solutions of Three-dimensional Scattering Problems’, Computer Techniques for Electromagnetics, R. Mittra (Ed.), Pergamon Press, Oxford (1973)Google Scholar
  43. Bennett, C. L. and Weeks, W. L., ‘Transient Scattering from Conducting Cylinders’, IEEE Trans. Antennas and Propagation, AP-18, p. 627 (1969)Google Scholar
  44. 33.
    Mitzner, K. M., ‘Numerical Solution for Transient Scattering from Hard Surface of Arbitrary Shape-Retarded Potential Technique’ J. Acoust. Soc. Am. 42 p. 391 (1967) Google Scholar
  45. 34.
    Adey, R. A., Computational Mechanics Centre Report (1981)Google Scholar
  46. 35.
    Neilson, H. C., Lu, Y. P. and Wang, Y. F., ‘Transient Scattering by Arbitrary Axisymmetric Surfaces’, J. Acoust. Soc. Am., 63, p. 1719 (1978)CrossRefGoogle Scholar
  47. Huang, H. Everstine, G. C. and Wang, Y. F., in Computational Methods for Fluid-Structure Interaction Problems,T. Belytschko and T. L. Geers (Eds.), AMD,26 ASME, New York, pp. 83–94 (1977)Google Scholar
  48. 36.
    Brebbia, C. A., Research note to be published in Applied Mathematical Modelling Google Scholar
  49. 37.
    Zienkiewicz, O. C., Kelly, D. W. and Bettess, P., ‘Marriage à la Mode The Best of Both Worlds, Int. Symposium on Innovative Num. Analysis in Applied Engineering Science, Versailles (1977)Google Scholar
  50. Margulies, M., ‘Combination of the Boundary Element and Finite Element Methods’, Progress in Boundary Element Methods, Vol. 1, C. A. Brebbia (Ed. ) (1981)Google Scholar
  51. 38.
    Shaw, R. P., ‘Diffraction of Acoustic Pulses ny Obstacles of Arbitrary Shape with a Robin Boundary Condition’, J. Acoust. Soc. Am., 41, p. 855 (1967)CrossRefGoogle Scholar
  52. 39.
    Connor, J. J. and Brebbia, C. A., Finite Element Techniques for Fluid Flow,Newnes-Google Scholar
  53. Butterworth, London (1977)Google Scholar
  54. Shaw, R. P. P., ‘Boundary Integral Equation Method Applied to Water Waves’, The Boundary Integral Equation Method, Computational Applications in Applied Mechanics, T. Cruse and F. Rizzo (Eds.), AMD, Vol. II, ASME, New York (1975)Google Scholar
  55. 40.
    Shippy, D. J., ‘Applications of the Boundary Integral Equation Method to Transient Phenomena in Solids’, ibid., p. 15Google Scholar
  56. Dominguez, J. and Alarcón, E., ‘Elastodynamics’, Progress in Boundary Element Methods, Vol. 1, C. A. Brebbia (Ed.) Pentech Press, London (1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Paul H. L. Groenenboom

There are no affiliations available

Personalised recommendations