Gas, Chemical, Free-Electron, and X-Ray Lasers

  • Orazio Svelto


Chapter 10 considers the most important types of lasers involving low-density active media, namely, gas, chemical, and free-electron lasers, in addition to some aspects of x-ray lasers using highly ionized plasmas. The main emphasis, again, is on the physical behavior of the laser and relating this behavior to general concepts developed in the previous chapters. Some engineering details are also presented with the intention of providing a better insight into the behavior of a particular laser. To complete the picture, some data about laser performances (e.g., oscillation wavelength(s), output power or energy, wavelength tunability, etc.) are also included since they are directly related to the potential applications of the given laser.


Vibrational Level Laser Action Population Inversion Lower Laser Level Laser Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Arrathoon, Helium-Neon Lasers and the Positive Column, in Lasers,vol. 4 (A. K. Levine and A. J. De Maria, eds.) (Marcel Dekker, New York, 1976), Chap. 3.Google Scholar
  2. 2.
    W. B. Bridges, Atomic and Ionic Gas Lasers, in Methods of Experimental Physics, vol. 15 ( C. L. Tang, ed.) (Academic, New York, 1979 ), pp. 33–151.Google Scholar
  3. 3.
    A. Javan, W. R. Bennett, and D. H. Herriott, Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture, Phys. Rev. Lett, 6 (1961).Google Scholar
  4. 4.
    C. E. Webb, Metal Vapor Lasers, Recent Advances and Applications, in Gas Flow and Chemical Lasers, Springer Proceedings in Physics N. 15 ( S. Rosenwork ed.). ( Springer-Verlag, Berlin, 1987 ), pp. 481–494.Google Scholar
  5. 5.
    C. C. Davis and T. A. King. Gaseous Ion Lasers, in Advances in Quantum Electronics, vol. 3 ( D. W. Goodwin, ed.) (Academic, New York, 1975 ), pp. 170–437.Google Scholar
  6. 6.
    D. H. Dunn and J. N. Ross, Argon Ion Laser, in Progress in Quantum Electronics, vol. 4 ( J. H. Sanders and S. Steinholm, eds.) (Pergamon. London, 1977 ), pp. 233–270.Google Scholar
  7. 7.
    W. B. Bridges, Laser Oscillation in Singly Ionized Argon in the Visible Spectrum, Appt Phys. Letters 4. 128 (1964).ADSGoogle Scholar
  8. 8.
    P. K. Cheo, CO, Lasers, in Lasers,Vol. 3 (A. K. Levine and A. J. De Maria, eds.) (Marcel Dekker. New York, 1971), Chap. 2.Google Scholar
  9. 9.
    A. J. De Maria, Review of High-Power CO2 Lasers, in Principles of Laser Plasma,(G. Bekefi, ed.) (Wiley, New York, 1976). Chap. 8.Google Scholar
  10. 10.
    C. K. N. Patel, W. L. Faust. and R. A. McFarlane, CW Laser Action on Rotational Transitions of theΣ u+ → Σ g+ Vibrational Band of CO2, Bull. Am. Phys. Soc. 9, 500 (1964).ADSGoogle Scholar
  11. 11.
    D. R. Hall and C. A. Hill, Radiofrequency-Discharge-Excited CO, Lasers, in Handbook of Molecular Lasers (P. Cheo, ed.) (Marcel Dekker. New York, 1987), Chap. 3.Google Scholar
  12. 12.
    K. M. Abramski, A. D. Colley, H. J. Baker, and D. R. Hall, Power Scaling of Large-Area Transverse Radiofrequency Discharge CO2 Lasers, Appl. Phys. Letters 54, 1833 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    P. E. Jackson, H. J. Baker, and D. R. Hall, CO2 Large-Area Discharge Laser Using an Unstable Waveguide Hybrid Resonator, Appl. Phys. Letters 54, 1950 (1989).ADSGoogle Scholar
  14. 14.
    R. E. Center, High-Power, Efficient Electrically Excited CO Laser, in Laser Handbook, vol. 3 ( M. L. Stitch, ed. ( North-Holland, Amsterdam, 1979 ), pp. 89–133.Google Scholar
  15. 15.
    C. S. Willet, An Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon, Oxford, UK, 1974), Sects. 6.2.1, 6. 2. 3.Google Scholar
  16. 16.
    N. G. Basov, V. A. Danilychev, and Y. M. Popov, Stimulated Emission in the Vacuum Ultraviolet Region, Soviet J Quantum Electrons. 1, 18 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    J. J. Ewing, Excimer Lasers, in Laser Handbook, vol. 3 ( M. L. Stitch. ed.) ( North-Holland, Amsterdam, 1979 ), pp. 135–97.Google Scholar
  18. 18.
    A. N. Chester, Chemical Lasers, in High-Power Gas Lasers ( E. R. Pike, ed.) ( Institute of Physics, Bristol and London, 1975 ), pp. 162–221.Google Scholar
  19. 19.
    C. J. Ultee, Chemical and Gas Dynamic Lasers, in Laser Handbook, vol. 3 ( M. L. Stitch and M. Bass, eds.) ( North-Holland, Amsterdam, 1985 ), pp. 199–287.Google Scholar
  20. 20.
    G. Dattoli and R. Renieri, Experimental and Theoretical Aspects of the Free-Electron Lasers, in Laser Handbook, vol. 4 ( M. L. Stitch, ed.) ( North-Holland, Amsterdam, 1979 ), pp. 1–142.Google Scholar
  21. 21.
    D. A. G. Deacon. L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A. Schwettman, and T. I. Smith, First Operation of a Free-Electron Laser, Phys. Rev. Lett. 38, 892 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    R. C. Elton, X-Ray Lasers ( Academic, Boston, 1990 ).Google Scholar
  23. 23.
    D. L. Matthews et al.,Demonstration of a Soft X-Ray Amplifier, Phys. Rev. Lett. 54, 110 (1985).Google Scholar
  24. 24.
    X-Rav Lasers 1996, (S. Svanberg and C. G. Wahtstrom, eds.), Institute of Physics Conference Series N. 151 (Institute of Physics, Bristol 1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Orazio Svelto
    • 1
  1. 1.Polytechnic Institute of Milan and National Research CouncilMilanItaly

Personalised recommendations