Advertisement

Syndromes of Extreme Insulin Resistance

  • George Grunberger
  • Hisham Alrefai

Abstract

This group of syndromes shares severe insulin resistance and hyperinsulinemia with variable clinical manifestations.1,2 Attention has been paid to these rare disorders because they provide insight into several aspects of insulin action at the molecular level and advance our understanding of the more common insulin resistant disorders, such as polycystic ovarian syndrome3 and type 2 diabetes mellitus.4

Keywords

Insulin Resistance Insulin Receptor Insulin Binding Acanthosis Nigricans Severe Insulin Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kahn CR, Flier JS, Bar RS, et al. The syndrome of insulin resistance and acanthosis nigricans: insulin receptor disorders in man. N Engl J Med; 294: 739–745, 1976.PubMedCrossRefGoogle Scholar
  2. 2.
    Moller DE, Flier JS. Insulin resistance: Mechanisms, syndromes, and implications. N Eng J Med; 325: 938–948, 1991.CrossRefGoogle Scholar
  3. 3.
    Barbieri RL, Smith S, Ryan KJ, et al. The role of hyperinsulinemia in the pathogenesis of ovarian hyperandrogenism. Fertil Steril 50: 197–212, 1988.PubMedGoogle Scholar
  4. 4.
    Barroso I, Curnell M, Crowley VE, et al. Dominant negative mutation in human PPAR gamma associated with severe insulin resistance, diabetes mellitus, and hypertension. Nature 402: 880–883, 1999.PubMedGoogle Scholar
  5. 5.
    Collinet M, Berthelon M, Benit P, et al. Familial hyperinsulinemia due to a mutation substituting histidine for arginine at position 65 in proinsulin: identification of the mutation by restriction enzyme mapping. Eur J Pediatr 157: 450–460, 1998.CrossRefGoogle Scholar
  6. 6.
    Hanede M, Polonsky KS, Bergenstal RM, et al. Familial hyperinsulinemia due to a structurally abnormal insulin. Definition of an emerging new clinical syndrome. N Eng J Med 310: 1288–1294, 1984.CrossRefGoogle Scholar
  7. 7.
    Duckworth WC, Bennet RG, Hamel FG. Insulin degradation: Progress and potential. Endo Rev 19: 608–624, 1998.CrossRefGoogle Scholar
  8. 8.
    Francis A, Hanning I, Alberti KG. The influence of insulin antibody levels on the plasma profile and action of subcutaneously injected human and bovine short acting insulins. Diabetologia 28: 330–334, 1985.PubMedCrossRefGoogle Scholar
  9. 9.
    Taylor SI, Grunberger G, Marcus-Samuels B, et al. Hypoglycemia associated with antibodies to the insulin receptor. N Eng J Med 307: 1422–1426, 1982.CrossRefGoogle Scholar
  10. 10.
    Virkamaki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103: 931–943, 1999.PubMedCrossRefGoogle Scholar
  11. 11.
    Gorden P, Carpentier JL, Frechet PO, et al. Internalization of polypeptide hormones: mechanism, intracellular localization and significance. Diabetologia 18: 263–274, 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Grunberger G, Robert A, Carpentier JL, et al. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and non-target tissue. J Lab Clin Med. 106: 211–217, 1985.PubMedGoogle Scholar
  13. 13.
    Flier JS, Minaker KL, Landsburg L, et al. Impaired in vivo insulin clearance in patients with target cell resistance to insulin. Diabetes 31: 132–135, 1982.PubMedCrossRefGoogle Scholar
  14. 14.
    Flier JS. Metabolic importance of acanthosis nigricans. Arch Derm 121: 193–194, 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Cruz PD, Hud JA Jr. Excess insulin binding to insulin-like growth factor receptors: proposed mechanism for acanthosis nigricans. J Invest Dermatol 98 (suppl): 82S - 85S, 1992.PubMedCrossRefGoogle Scholar
  16. 16.
    Fradkin JE, Eastman RC, Lesniak MA, et al. Specificity spillover at the hormone receptor: exploring its role in human disease. N Engl J Med; 320: 640–645, 1989.PubMedCrossRefGoogle Scholar
  17. 17.
    Rotman-Pikielny P, Andewelt A, Ozyavuzligil A, et al. Polycystic ovarian syndrome (PCOS): Lessons from patients with severe insulin resistance syndromes. The Endocrine Society’s 83`d Annual Meeting p80, 2001.Google Scholar
  18. 18.
    Cauble MS, Gilroy R, Sorrel MF, et al. Lipoatrophic diabetes and end-stage liver disease secondary to nonalcoholic steatohepatitis with recurrence after liver transplantation. Transplantation 71: 892–895, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Garg A, Wilson R, Barnes R, et al. A gene for congenital generalized lipodystrophy maps to human chromosome 9q34. J Clin Endocrinol Metab 84: 3390–3394, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    Peters JM, Barnes R, Bennett L, et al. Localization the gene for familial partial lipodystrophy (Dunnigan Variety) to chromosome 1q21–22. Nat Genet 18: 292–295, 1998.PubMedCrossRefGoogle Scholar
  21. 21.
    Jackson SN, Pinkney J, Bargiotta A, et al. A defect in the regional deposition of adipose tissue (partial lipodystrophy) is encoded by a gene at chromosome lq. Am J Hum Genet 63: 534–540, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Cao H, Hegele RA. Nuclear lamin A/ C R482Q mutations in Canadian kindreds with Dunnigan type familial partial lipodystophy. Hum Molec Genet 9: 109–112, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Billings JK, Milgraum SS, Gupta AK, et al. Lipoatrophic panniculitis: a possible autoimmune inflammatory disease of fat report of three cases. Arch Dermatol 123: 1662–1666, 1987.PubMedCrossRefGoogle Scholar
  24. 24.
    Hubler A, Abendroth K, Keiner T, et al. Dysregulation of insulin-like growth factors in a case of generalized acquired lipoatrophic diabetes mellitus (Lawrence syndrome) connected with autoantibodies against adipocytes membranes. Exp Clin Endocrinol Diabetes 106: 79–84, 1998.PubMedCrossRefGoogle Scholar
  25. 25.
    Mathieson PW, Wurzner R, Oliveria DB, et al. Complement mediated adipocytes lysis by nephritic factor sera. J Exp Med 177: 1827–1831, 1993.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsiodras S, Mantzoros C, Hammer S, et al. Effects of protease inhibitors on hyperglycemia, hyperlipidemia and lipodystrophy. A 5-year cohort study. Arch Int Med 160: 2050–2056, 2000.CrossRefGoogle Scholar
  27. 27.
    Van Der Valk M, Gisolf EH, Reiss P, et al. Increased risk of lipodystrophy when nucleoside analogue reverse trancriptase inhibitors are included with protease inhibitors in the treatment of HIV-1 infection. AIDS 15: 847–855, 2001.PubMedCrossRefGoogle Scholar
  28. 28.
    Panse I, Vasseur E, Raffin-Sanson ML, et al. Lipodystrophy associated with protease inhibitors. Br J Dermatol 142: 496–500, 2000.PubMedCrossRefGoogle Scholar
  29. 29.
    Caron M, Auclair M, Vigouroux C, et al. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein —1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes 50: 1378–1388, 2001.PubMedCrossRefGoogle Scholar
  30. 30.
    Dowell P, Flexner C, Kwiterovich PO, et al. Suppression of preadipocyte differentiation and promotion of adipocytes death by HIV protease inhibitors. J Biol Chem 275: 41325–41332, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem 275: 2025120254, 2000.Google Scholar
  32. 32.
    Meyer MM, Schuett M, Jost P, et al. Indinavir decreases insulin-stimulated phosphatidylinositol 3-kinase activity and stimulates leptin secretion in human adipocytes. Diabetes 50 (Suppl 2): A414, 2001.Google Scholar
  33. 33.
    Flier JS, Moller DE, Moses AC, et al. Insulin—mediated pseudoacromegaly: Clinical and biochemical characterization of a syndrome of selective insulin resistance. J Clin Endocrinol Metab 76: 1533–1541, 1993.PubMedCrossRefGoogle Scholar
  34. 34.
    Martin XD, Zenobi PD. Type A syndrome of insulin resistance: anterior chamber anomalies of the eye and effects of insulin — like growth factor-1 on the retina. Ophthalmologica 215: 117–123, 2001.PubMedCrossRefGoogle Scholar
  35. 35.
    Grunberger G, Zick Y, Gorden P. Defect in phosphorylation of insulin receptors in cells from an insulin-resistant patient with normal insulin binding. Science 223: 832–934, 1984.CrossRefGoogle Scholar
  36. 36.
    Maddux BA, Goldfine ID. Membrane glycoprotein PC-1 inhibition of insulin receptor function occurs via direct interaction with receptor alpha subunit. Diabetes 49: 13–19, 2000.PubMedCrossRefGoogle Scholar
  37. 37.
    Flier JS, Kahn CR, Roth J, et al. Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance. Science 190: 63–65, 1975.PubMedCrossRefGoogle Scholar
  38. 38.
    Arioglu E, Andewelt A, Diabo C, et al. Clinical course of autoantibody to the insulin receptor syndrome. The Endocrine Society’s 83`d Annual Meeting p113, 2001.Google Scholar
  39. 39.
    Flier JS, Bar RS, Muggeo M, et al. The evolving clinical course of patients with insulin receptor autoantibodies: Spontaneous remission or receptor proliferation with hypoglycemia. J Clin Endocrinol Metab 47: 985–995, 1978.PubMedCrossRefGoogle Scholar
  40. 40.
    Bar RS, Levis WR, Rechler MM, et al. Extreme insulin resistance in ataxia telangectasia: defect in affinity of insulin receptors. NEngl J Med 298: 1164–1171, 1978.CrossRefGoogle Scholar
  41. 41.
    Burant CF, Sreenan S, Hirano K, et al. Troglitazone action is independent of adipose tissue. J Clin Invest 100: 2900–2908, 1997.PubMedCrossRefGoogle Scholar
  42. 42.
    Arioglu E, Duncan-Morin J, Sebring N, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndrome. Ann Int Med 133: 263–274, 2000.PubMedGoogle Scholar
  43. 43.
    Hadigan C, Corcoran C, Basgoz N, et al. Metformin in the treatment of HIV lipodystrophy syndrome. JAMA 284: 472–477, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    Di Paolo S. Metformin ameliorates extreme insulin resistance in a patient with anti-insulin receptor antibodies: Description of insulin receptor and postreceptor effects in vivo and vitro. Acta Endocrinol 126: 117–123, 1992.PubMedGoogle Scholar
  45. 45.
    Rique S, Ibanez L, Marcos MV, et al. Effect of metformin on androgen and insulin concentration in type A insulin resistance syndrome. Diabetologia 43: 385–386, 2000.PubMedCrossRefGoogle Scholar
  46. 46.
    Nakae J, Kato M, Murashita M, et al. Long-term effect of recombinant human insulin — like growth factorl on metabolic and growth control in a patient with leprechaunism. J Clin Endocrinol Metab 83: 542–549, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Morrow LA, O’Brien MB, Moller DE, et al. Recombinant human insulin like growth factor —1 therapy improves glycemic control and insulin action in type A syndrome insulin resistance. J Clin Endocrinol Metabol 79: 205–210, 1994.CrossRefGoogle Scholar
  48. 48.
    Quin JD, Fisher BM, Paterson KR, et al. Acute response to recombinant insulin-like growth factor I in a patient with Mendenhall’s syndrome. N Engl J Med 323: 1425–1426, 1990.PubMedCrossRefGoogle Scholar
  49. 49.
    Yamamoto T, Sato T, Mori T, et al. Clinical efficacy of insulin like growth factor 1 in a patient with auto-antibodies to insulin receptors: A case report. Diabetes Res Clin Pract 49: 65–69, 2000.PubMedCrossRefGoogle Scholar
  50. 50.
    Torres RA, Unger KW, Cadman JA, et al. Recombinant human growth hormone improves truncal adiposity and buffalo humps in HIV positive patients on HAART. AIDS 13: 2479–2481, 1999.PubMedCrossRefGoogle Scholar
  51. 51.
    Kramer N, Rosenstein ED, Schneider G. Refractory hyperglycemia complicating an evolving connective tissue disease: response to cyclosporin. J Rheumatol 25: 816–818, 1998.PubMedGoogle Scholar
  52. 52.
    Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipotrophic mice. J Clin Invest 105: 271–278, 2000.PubMedCrossRefGoogle Scholar
  53. 53.
    Shimomura I, Hammer RE, Ikemoto S, et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401: 73–76, 1999.PubMedCrossRefGoogle Scholar
  54. 54.
    Reitman ML, Gavrilova O. A-ZIP/F-1 mice lacking white fat: a model for understanding lipoatrophic diabetes. Int J Obes Relat Metab Disord 24 (Suppl 4): S11 - S14, 2000.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang B. Salituro G, Szalkowski D, et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284: 974–977, 1999.PubMedCrossRefGoogle Scholar
  56. 56.
    Eriksson JW, Bremell T, Eliasson B, et al. Successful treatment with plasmapheresis, cyclophosphamide, and cyclosporin A in type B syndrome of insulin resistance. Case report. Diabetes Care 21: 1217 1220, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • George Grunberger
  • Hisham Alrefai

There are no affiliations available

Personalised recommendations