Advertisement

Maturity-Onset Diabetes of the Young: Molecular Genetics, Clinical Manifestations and Therapy

  • Markus Stoffel

Abstract

Type 2 diabetes accounts for ≥90% of all diabetes. It ranks among the top ten causes of death in western nations and afflicts about 5% of populations in industrialized countries. Type 2 diabetes is a heterogeneous, complex metabolic syndrome in which hyperglycemia results from decreased insulin effectiveness (insulin resistance) and an impaired insulin secretory response to glucose. Genetic and lifestyle factors (e.g. weight, physical activity) predispose to the development of these defects, however, the genetic mechanisms that underlie the pathophysiology of most forms of type 2 diabetes are not completely understood.

Keywords

Hepatocyte Nuclear Factor Glutamic Acid Decarboxylase Antibody Visceral Endoderm Insulin Secretion Rate Pancreatic Agenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matschinsky FM: Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39: 647–652, 1990.PubMedCrossRefGoogle Scholar
  2. 2.
    Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI: Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). [see comments]. Nature 384: 458–460, 1996.PubMedCrossRefGoogle Scholar
  3. 3.
    Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nature Genetics 15: 106–110, 1997.PubMedCrossRefGoogle Scholar
  4. 4.
    Stoffers DA, Ferrer J, Clarke WL, Habener JF: Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nature Genetics 17: 138139, 1997.Google Scholar
  5. 5.
    Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le Beau MM, Yamada S, Nishigori H, Takeda J, Fajans SS, Hattersley AT, Iwasaki N, Hansen T, Pedersen O, Polonsky KS, Bell GI: Mutations in the hepatocyte nuclear factorlalpha gene in maturity-onset diabetes of the young (MODY3). [see comments]. Nature 384: 455–458, 1996.PubMedCrossRefGoogle Scholar
  6. 6.
    Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahara T, Iwamoto Y, Bell GI: Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nature Genetics 17: 384–385, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, Saad M, Warram JH, Montminy M, Krolewski AS: Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nature Genetics 23: 323–328, 1999.PubMedCrossRefGoogle Scholar
  8. 8.
    Waeber G, Delplanque J, Bonny C, Mooser V, Steinmann M, Widmann C, Maillard A, Miklossy J, Dina C, Hani EH, Vionnet N, Nicod P, Boutin P, Froguel P: The gene MAPK8IP1, encoding isletbrain-1, is a candidate for type 2 diabetes. Nature Genetics 24: 29 1295, 2000.Google Scholar
  9. 9.
    Vinik A, Bell G: Mutant insulin syndromes. [erratum appears in Horm Metab Res 1988 Mar;20(3):191]. Hormone Metab Res 20: 110, 1988.Google Scholar
  10. 10.
    Chen WS, Manova K, Weinstein DC, Duncan SA, Plump AS, Prezioso VR, Bachvarova RF, Darnell JE: Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Development 8: 2466–2477, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    Stoffel M, Duncan SA: The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci USA 94: 13209–13214, 1997.PubMedCrossRefGoogle Scholar
  12. 12.
    Byrne MM, Sturis J, Fajans SS, Ortiz FJ, Stoltz A, Stoffel M, Smith MJ, Bell GI, Halter JB, Polonsky KS: Altered insulin secretory responses to glucose in subjects with a mutation in the MODY1 gene on chromosome 20. Diabetes 44: 699–704, 1995.PubMedCrossRefGoogle Scholar
  13. 13.
    Herman WH, Fajans SS, Smith MJ, Polonsky KS, Bell GI, Halter JB: Diminished insulin and glucagon secretory responses to arginine in nondiabetic subjects with a mutation in the hepatocyte nuclear factor-4alpha/MODY1 gene. Diabetes 46: 1749–1754, 1997.PubMedCrossRefGoogle Scholar
  14. 14.
    Shih DQ, Dansky HM, Fleisher M, Assmann G, Fajans SS, Stoffel M: Genotype/phenotype relationships in HNF-4alpha/MODY1: haploinsufficiency is associated with reduced apolipoprotein (AII), apolipoprotein (CIII), lipoprotein(a), and triglyceride levels. Diabetes 49: 832–837, 2000.PubMedCrossRefGoogle Scholar
  15. 15.
    Moller AM, Urhammer SA, Dalgaard LT, Reneland R, Berglund L, Hansen T, Clausen JO, Lithell H, Pedersen O: Studies of the genetic variability of the coding region of the hepatocyte nuclear factor4alpha in Caucasians with maturity onset NIDDM. Diabetologia 40: 980–983, 1997.PubMedCrossRefGoogle Scholar
  16. 16.
    Malecki MT, Yang Y, Antonellis A, Curtis S, Warram JH, Krolewski AS: Identification of new mutations in the hepatocyte nuclear factor 4alpha gene among families with early onset Type 2 diabetes mellitus. Diabetic Medicine 16: 193–200, 1999.PubMedCrossRefGoogle Scholar
  17. 17.
    Hani EH, Suaud L, Boutin P, Chevre JC, Durand E, Philippi A, Demenais F, Vionnet N, Furuta H, Velho G, Bell GI, Laine B, Froguel P: A missense mutation in hepatocyte nuclear factor-4 alpha, resulting in a reduced transactivation activity, in human late-onset non-insulin-dependent diabetes mellitus. J Clin Invest 101: 521–526, 1998.PubMedCrossRefGoogle Scholar
  18. 18.
    Navas MA, Munoz-Elias EJ, Kim J, Shih D, Stoffel M: Functional characterization of the MODY1 gene mutations HNF4(R127W), HNF4(V255M), and HNF4(E276Q). Diabetes 48: 1459–1465, 1999.PubMedCrossRefGoogle Scholar
  19. 19.
    Byrne MM, Sturis J, Clement K, Vionnet N, Pueyo ME, Stoffel M, Takeda J, Passa P, Cohen D, Bell GI: Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest 93: 1120–1130, 1994.PubMedCrossRefGoogle Scholar
  20. 20.
    Njolstad PR, Sovik O, Cuesta-Munoz A, Bjorkhaug L, Massa O, Barbetti F, Undlien DE, Shiota C, Magnuson MA, Molven A, Matschinsky FM, Bell GI: Neonatal Diabetes Mellitus Due to Complete Glucokinase Deficiency. N Engl J Med 344: 1588–1592, 2001.PubMedCrossRefGoogle Scholar
  21. 21.
    Glaser B, Kesavan P, Heyman M, Davis E, Cuesta A, Buchs A, Stanley CA, Thornton PS, Permutt MA, Matschinsky FM, Herold KC: Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med 338: 226–230, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Grupe A, Hultgren B, Ryan A, Ma YH, Bauer M, Stewart TA: Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 83: 69–78, 1995.PubMedCrossRefGoogle Scholar
  23. 23.
    Velho G, Petersen KF, Perseghin G, Hwang JH, Rothman DL, Pueyo ME, Cline GW, Froguel P, Shulman GI: Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects. J Clin Invest 98: 1755–1761, 1996.PubMedCrossRefGoogle Scholar
  24. 24.
    Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S: Mutations in the glucokinase gene of the fetus result in reduced birth weight. [see comments]. Nature Genetics 19: 268–270, 1998.PubMedCrossRefGoogle Scholar
  25. 25.
    Pearson ER, Velho G, Clark P, Stride A, Shepherd M, Frayling TM, Bulman MP, Ellard S, Froguel P, Hattersley AT: beta-cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-lalpha and glucokinase mutations. Diabetes 50 (Suppl 1): 5101–107, 2001.Google Scholar
  26. 26.
    Froguel P, Zouali H, Vionnet N, Velho G, Vaxillaire M, Sun F, Lesage S, Stoffel M, Takeda J, Passa P: Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. [see comments]. N Engl J Med 328: 697–702, 1993.PubMedCrossRefGoogle Scholar
  27. 27.
    Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, Babinet C, Yaniv M: Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 84: 575–585, 1996.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee YH, Sauer B, Gonzalez FJ: Laron dwarfism and non-insulin- dependent diabetes mellitus in the Hnf-lalpha knockout mouse. Mol Cell Biol 18: 3059–3068, 1998.PubMedGoogle Scholar
  29. 29.
    Hiraiwa H, Pan C-J, Lin B, Akiyama TE, Gonzalez FJ, Chou JY: A molecular link between the common phenotypes of type 1 glycogen storage disease and HNF1-alpha-null mice. J Biol Chem 276: 79637967, 2001.Google Scholar
  30. 30.
    Shih DQ, Bussen M, Sehayek E, Ananthanarayanan M, Shneider BL, Suchy FJ, Shefer S, Bollileni JS, Gonzalez FJ, Breslow JL, Stoffel M: Hepatocyte nuclear factor-lalpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nature Genetics 27: 375–382, 2001.PubMedCrossRefGoogle Scholar
  31. 31.
    Dukes ID, Sreenan S, Roe MW, Levisetti M, Zhou YP, Ostrega D, Bell GI, Pontoglio M, Yaniv M, Philipson L, Polonsky KS: Defective pancreatic beta-cell glycolytic signaling in hepatocyte nuclear factor-lalpha-deficient mice. J Biol Chem 273: 24457–24464, 1998.PubMedCrossRefGoogle Scholar
  32. 32.
    Shih DQ, Screenan S, Munoz KN, Phillipson L, Pontoglio M, Yaniv M, Polonsky KS, Stoffel M: Loss of HNF-la function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes 50: 2472–2480, 2001.PubMedCrossRefGoogle Scholar
  33. 33.
    Yamagata K, Yang Q, Yamamoto K, Iwahashi H, Miyagawa J, Okita K, Yoshiuchi I, Miyazaki J, Noguchi T, Nakajima H, Namba M, Hanafusa T, Matsuzawa Y: Mutation P291 fsinsC in the transcription factor hepatocyte nuclear factor-lalpha is dominant negative. Diabetes 47: 1231–1235, 1998.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaisaki PJ, Menzel S, Lindner T, Oda N, Rjasanowski I, Sahm J, Meincke G, Schulze J, Schmechel H, Petzold C, Ledermann HM, Sachse G, Boriraj VV, Menzel R, Kerner W, Turner RC, Yamagata K, Bell GI: Mutations in the hepatocyte nuclear factor-lalpha gene in MODY and early-onset NIDDM: evidence for a mutational hotspot in exon 4. [erratum appears in Diabetes 1997 Jul;46(7):1239]. Diabetes 46: 528–535, 1997.PubMedCrossRefGoogle Scholar
  35. 35.
    Hegele RA, Cao H, Harris SB, Hanley AJ, Zinman B: The hepatic nuclear factor-lalpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. J Clin Endocrinol Metab 84: 1077–1082, 1999.PubMedCrossRefGoogle Scholar
  36. 36.
    Lehto M, Tuomi T, Mahtani MM, Widen E, Forsblom C, Sarelin L, Gullstrom M, Isomaa B, Lehtovirta M, Hyrkko A, Kanninen T, Orho M, Manley S, Turner RC, Brettin T, Kirby A, Thomas J, Duyk G, Lander E, Taskinen MR, Groop L: Characterization of the MODY3 phenotype. Early-onset diabetes caused by an insulin secretion defect. J Clin Invest 99: 582–591, 1997.PubMedCrossRefGoogle Scholar
  37. 37.
    Hansen T, Eiberg H, Rouard M, Vaxillaire M, Moller AM, Rasmussen SK, Fridberg M, Urhammer SA, Holst JJ, Almind K, Echwald SM, Hansen L, Bell GI, Pedersen O: Novel MODY3 mutations in the hepatocyte nuclear factor-lalpha gene: evidence for a hyperexcitability of pancreatic beta-cells to intravenous secretagogues in a glucose-tolerant carrier of a P447L mutation. Diabetes 46: 726–730, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Frayling TM, Evans JC, Bulman MP, Pearson E, Allen L, Owen K, Bingham C, Hannemann M, Shepherd M, Ellard S, Hattersley AT: beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 50 (Suppl 1): S94–100, 2001.PubMedCrossRefGoogle Scholar
  39. 39.
    Dutta S, Gannon M, Peers B, Wright C, Bonner-Weir S, Montminy M: PDX:PBX complexes are required for normal proliferation of pancreatic cells during development. Proc Natl Acad Sci USA 98: 1065–1070, 2001.PubMedCrossRefGoogle Scholar
  40. 40.
    Ohlsson H, Karlsson K, Edlund T: IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO Journal 12: 4251–4259, 1993.PubMedGoogle Scholar
  41. 41.
    Jonsson J, Carlsson L, Edlund T, Edlund H: Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371: 606–609, 1994.PubMedCrossRefGoogle Scholar
  42. 42.
    Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H: beta-cellspecific inactivation of the mouse Ipfl/Pdxl gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Development 12: 1763–1768, 1998.PubMedCrossRefGoogle Scholar
  43. 43.
    Hart AW, Baeza N, Apelqvist A, Edlund H: Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature 408: 864–868, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    Stoffers DA, Stanojevic V, Habener JF: Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein. J Clin Invest 102: 23 2241, 1998.Google Scholar
  45. 45.
    Hani EH, Stoffers DA, Chevre JC, Durand E, Stanojevic V, Dina C, Habener JF, Froguel P: Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J Clin Invest 104: R41–48, 1999.PubMedCrossRefGoogle Scholar
  46. 46.
    Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LI, Bulman MP, Ayres S, Shepherd M, Clark P, Millward A, Demaine A, Wilkin T, Docherty K, Hattersley AT: Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest 104: R33–39, 1999.PubMedCrossRefGoogle Scholar
  47. 47.
    Coffinier C, Thepot D, Babinet C, Yaniv M, Barra J: Essential role for the homeoprotein vHNF1/HNFlbeta in visceral endoderm differentiation. Development 126: 4785–4794, 1999.PubMedGoogle Scholar
  48. 48.
    Barbacci E, Reber M, Ott MO, Breillat C, Huetz F, Cereghini S: Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development 126: 4795–4805, 1999.PubMedGoogle Scholar
  49. 49.
    Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O: A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-ibeta. Hum Mol Genetics 8: 2001–2008, 1999.CrossRefGoogle Scholar
  50. 50.
    Bingham C, Busman MP, Ellard S, Allen LI, Lipkin GW, Hoff WG, Woolf AS, Rizzoni G, Novelli G, Nicholls AJ, Hattersley AT: Mutations in the hepatocyte nuclear factor-lbeta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Gen 68: 219–224, 2001.CrossRefGoogle Scholar
  51. 51.
    Bingham C, Ellard S, Allen L, Bulman M, Shepherd M, Frayling T, Berry PJ, Clark PM, Lindner T, Bell GI, Ryffel GU, Nicholls AJ, Hattersley AT: Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta. [see comments]. Kid Intl 57: 898–907, 2000.CrossRefGoogle Scholar
  52. 52.
    Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ: Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Development 11: 2323–2334, 1997.PubMedCrossRefGoogle Scholar
  53. 53.
    Duvillie B, Cordonnier N, Deltour L, Dandoy-Dron F, Itier JM, Monthioux E, Jami J, Joshi RL, Bucchini D: Phenotypic alterations in insulin-deficient mutant mice. Proc Natl Acad Sci USA 94: 51375140, 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Markus Stoffel

There are no affiliations available

Personalised recommendations